Browse > Article
http://dx.doi.org/10.21218/CPR.2022.10.2.049

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization  

Hwang, Eunhye (Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology)
Kwon, Tae-Hyuk (Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology)
Publication Information
Current Photovoltaic Research / v.10, no.2, 2022 , pp. 49-55 More about this Journal
Abstract
With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.
Keywords
Perovskite solar cells; UV stability; Humidity stability; Commercialization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sun, Y., Fang, X., Ma, Z., Xu, L., Lu, Y., Yu, Q., Yuan, N., and Ding, J., "Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer," J. Mater. Chem. C, 5, 8682-8687 (2017).   DOI
2 Florencio, L. A., Gomez-Malagon, L. A., Lima, B. C., Gomes, A. S.L., Garcia, J.A.M., and Kassab, L. R.P., "Efficiency enhancement in solar cells using photon down-conversion in Tb/Yb-doped tellurite glass," Sol. Energy Mater. Sol. Cells, 157, 468-475 (2016).   DOI
3 Mora, M.B., Amelines-Sarria, O., Monroy, B.M., Hernandez-Perez, C.D., and Lugo, J.E., "Materials for downconversion in solar cells: Perspectives," Sol. Energy Mater Sol. Cells, 165, 59-71 (2017).   DOI
4 Jiang, L., Chen, W. Zheng, J., Zhu, L., Mo, L., Li, Z., Hu, L., Hayat, T., Alsaedi, A. Zhang, C., and Dai, S., "Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex," ACS Appl. Mater. Interfaces, 9, 26958-26964 (2017).   DOI
5 Tai, Q., You, P., Sang, H., Liu, Z., Hu, C., Chan, H. L.W., and Yan, F., "Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity," Nat. Commun., 7, 11105 (2016).   DOI
6 Rahman, N. U., Khan, W. U., Khan, S., Chen, X., Khan, J., Zhao, J., Yang, Z., Wu, M., and Chi, Z., "A promising europium-based down conversion material: organic-inorganic perovskite solar cells with high photovoltaic performance and UV-light stability," J. Mater. Chem. A, 7, 6467-6474 (2019).   DOI
7 An, Y., Wang, C., Cao, G., and Li, X., "Heterojunction Perovskite Solar Cells: OptoElectro-Thermal Physics, Modeling, and Experiment," ACS Nano, 14, 5017-5026 (2020).   DOI
8 Sum, T. C., Chen, S., Xing, G., Liu, X., and Wu, B., "Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters," Nanotechnology, 26, 342001 (2015).   DOI
9 Ji, J., Liu, X., Jiang, H., Duan, M., Liu, B., Huang, H., Wei, D., Li, Y., and Li, M., "Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States," iScience, 23, 101013 (2020).   DOI
10 Tan, F., Saidaminov, M. I., Tan, H., Fan, J. Z., Wang, Y., Yue, S., Wang, X., Shen, Z., Li, S., Kim, J., Gao, Y., Yue, G., Liu, R., Huang, Z., Dong, C., Hu, X., Zhang, W., Wang, Z., Qu, S., Wang, Z., and Sargent, E. H., "Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability," Adv. Funct. Mater., 30, 2005155 (2020).   DOI
11 Wang, H.-P. and He, Jr-H., "Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design," Adv. Energy Mater., 7, 1602385 (2017).   DOI
12 Hou, Y., Zhou, Z. R., Wen, T. Y., Qiao, H. W., Lin, Z. Q., Ge, B., and Yang, H. G., "Enhanced moisture stability of metal halide perovskite solar cells based on sulfur-oleylamine surface modification," Nanoscale Horiz., 4, 208-213 (2019).   DOI
13 Bella, F., Griffini, G., Correa-Baena, J.-P., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S., and Gerbaldi, C., "Improving efficiency and stability ofperovskite solar cells withphotocurable fluoropolymers," Science, 354, 203-206 (2016).   DOI
14 Ito, S., Tanaka, S., Manabe, K., and Nishino, H., "Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells," J. Phys. Chem. C, 118, 30, 16995-17000 (2014).   DOI
15 Hwang, E., Kim, H., Lee, S.-H., Seo, J. H., Kim, H.-T., Lee, C., Jang, S.-Y., Seo, K., Kwon, T.-H., "Fabrication of Water-Repellent Platinum(II) Complex-Based Photon Downshifting Layers for Perovskite Solar Cells by Ultrasonic Spray Deposition," Adv. Energy Mater., 10, 2001238 (2020).   DOI
16 Idigoras, J., Aparicio, F. J., Contreras-Bernal, L., Ramos-Terron, S., Alcaire, M., Sanchez-Valencia, J. R., Borras, A., Barranco, A., and Anta, J. A., "Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers," ACS Appl. Mater. Interfaces, 10, 11587-11594 (2018).   DOI
17 Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131, 6050-6051 (2009).   DOI
18 Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., and Seok, S. I., "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, 598, 444-450 (2021).   DOI
19 Saki, Z., Byranvand, M. M., Taghavinia, N., Kedia, M., and Saliba, M., "Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells," Energy Environ. Sci., 14, 5690-5722 (2021).   DOI
20 Herz, L. M., "Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits," ACS Energy Lett., 2, 1539-1548 (2017).   DOI
21 Li, B., Li, Y., Zheng, C., Gao, D., and Huang, W., "Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches," RSC Adv., 6, 38079-38091 (2016).   DOI
22 Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Gratzel, M., and Han, L., "Efficient and stable large-areaperovskite solar cells with inorganiccharge extraction layers," Science, 350, 944-948 (2015).   DOI
23 Tsai, C.-H., Li, N., Lee, C.-C., Wu, H.-C., Zhu, Z., Wang, L., Chen, W.-C., Yan, H., and Chueh, C.-C., "Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole transporting layers," J. Mater. Chem. A, 6, 12999-13004 (2018).   DOI
24 Trupke, T., Green, M. A., and Wurfel, P., "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668 (2002).   DOI