DOI QR코드

DOI QR Code

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications

  • Received : 2016.10.24
  • Accepted : 2017.05.02
  • Published : 2017.07.20

Abstract

The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.

Keywords

References

  1. E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, "Buck-boost converter for sensorless power optimization of piezoelectric energy harvester," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 2018-2025, Sep. 2007. https://doi.org/10.1109/TPEL.2007.904230
  2. S. E. S., K. Chatterjee, and S. Bandyopadhyay, "One-cycle-controlled single-stage single-phase voltage-sensorless grid-connected PV system," IEEE Trans. Ind. Electron., Vol. 60, No. 3, pp. 1216-1224, Mar. 2013. https://doi.org/10.1109/TIE.2012.2191755
  3. D. Krahenbuhl, C. Zwyssig, and J. W. Kolar, "Half-controlled boost rectifier for low-power high-speed permanent-magnet generators," IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5066-5075, 2011. https://doi.org/10.1109/TIE.2011.2126531
  4. D. Krahenbuhl, C. Zwyssig, K. Bitterli, M. Imhof, and J. W. Kolar, "Evaluation of ultra-compact rectifiers for low power, high-speed, permanent-magnet generators," in Annual Conference of IEEE Industrial Electronics, 2009, No. Cm, pp. 448-455.
  5. H. J. Kim, G. B. Chung, and J. Choi, "Resonant pulse power converter with a self-switching technique," J. Power Electron., Vol. 10, No. 6, pp. 784-791, 2010. https://doi.org/10.6113/JPE.2010.10.6.784
  6. G. Chung and K. D. T. Ngo, "Analysis of an AC/DC resonant pulse power converter for energy harvesting using a micro piezoelectric device," J. Power Electron., Vol. 5, No. 4, pp. 247-256, 2005.
  7. S. Cheng, Y. Jin, Y. Rao, and D. P. Arnold, "An active voltage doubling ac/dc converter for low-voltage energy harvesting applications," IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2258-2265, 2011. https://doi.org/10.1109/TPEL.2010.2096234
  8. G. D. Szarka, N. McNeill, P. Proynov, and B. H. Stark, "Switched-capacitor power sensing in low-power energy harvesting systems," Electron. Lett., Vol. 49, No. 2, pp. 151-152, Jan. 2013. https://doi.org/10.1049/el.2012.3907
  9. G. D. Szarka, S. G. Burrow, and B. H. Stark, "UltraLow power, fully autonomous boost rectifier for electromagnetic energy harvesters," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3353-3362, 2013. https://doi.org/10.1109/TPEL.2012.2219594
  10. S. S. Hashemi, M. Sawan, and Y. Savaria, "A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices," IEEE Trans. Biomed. Circuits Syst., Vol. 6, No. 4, pp. 326-335, 2012. https://doi.org/10.1109/TBCAS.2011.2177267
  11. D. Maurath, P. F. Becker, D. Spreemann, and Y. Manoli, "Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking," IEEE J. Solid-State Circuits, Vol. 47, No. 6, pp. 1369-1380, 2012. https://doi.org/10.1109/JSSC.2012.2188562
  12. M. Ben Said, M. W. Naouar, I. Bahri, E. Monmasson, M. Merai, M. Douma, and I. Slama-Belkhodja, "Full system on programmable chip solution for DPC control of three phase PWM boost rectifier," IECON Proc. (Industrial Electron. Conf., pp. 3067-3072, 2012.
  13. H. Wu, J. Zhang, X. Qin, T. Mu, and Y. Xing, "Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface," Power Electronics, IEEE Transactions on, Vol. 31, No. 7. pp. 4847-4860, 2016.
  14. H. Wang, Y. Tang, and A. Khaligh, "A bridgeless boost rectifier for low-voltage energy harvesting applications," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5206-5214, 2013. https://doi.org/10.1109/TPEL.2013.2242903
  15. Y. Li, Z. Zhu, Y. Yang, and C. Zhang, "An input-powered high-efficiency interface circuit with zero standby power in energy harvesting systems," J. Power Electron., Vol. 15, No. 4, pp. 1131-1138, 2015. https://doi.org/10.6113/JPE.2015.15.4.1131
  16. E. Dallago, A. Danioni, M. Marchesi, V. Nucita, and G. Venchi, "A self-powered electronic interface for electromagnetic energy harvester," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3174-3182, 2011. https://doi.org/10.1109/TPEL.2011.2146277
  17. D. Vasic, Y. Y. Chen, and F. Costa, "Design of self-powering part of SSHI interface for piezoelectric energy harvesting," Electron. Lett., Vol. 49, No. 4, pp. 288-290, Feb. 2013. https://doi.org/10.1049/el.2012.3898
  18. S. H. Song, S. Kang, K. Park, S. Shin, and H. Kim, "Applications of mems-mosfet hybrid switches to power management circuits for energy harvesting systems," J. Power Electron., Vol. 12, No. 6, pp. 954-959, 2012. https://doi.org/10.6113/JPE.2012.12.6.954
  19. C. Gong, Y. Fan, Z. Wei, X. Chen, and J. Chen, "Modified one-cycle-controlled three-phase pulse-width modulation rectifiers under low-output DC voltage conditions," IET Power Electron., Vol. 7, No. 3, pp. 753-763, Mar. 2014. https://doi.org/10.1049/iet-pel.2013.0214
  20. X. Xie, C. P. Liu, F. N. K. Poon, and M. H. Pong, "The active diode - Current-driven synchronous rectifier," in China Beijing International Power Technology Forum, 2002.
  21. D. P. Arnold, P. Galle, F. Herrault, S. Das, J. H. Lang, and M. G. Allen, "A self-contained, flow-powered microgenerator system," Tech. Dig. 5th Int. Workshop Micro Nanotechnology For Power Generation and Energy Conversion Apps. (PowerMEMS 2005), 2005.
  22. M. K. Senesky and S. R. Sanders, "A millimeter-scale electric generator," IEEE Trans. Ind. Appl., Vol. 44, No. 4, pp. 1143-1149, Jul. 2008. https://doi.org/10.1109/TIA.2008.926291
  23. Y. Rao and D. P. Arnold, "Input-powered energy harvesting interface circuits with zero standby power," 2011 Twenty-Sixth Annu. IEEE Appl. Power Electron. Conf. Expo., pp. 1992-1999, 2011.
  24. C. H. Lu, Y. J. Wang, C. K. Sung, and P. C. P. Chao, "A hula-hoop energy-harvesting system," IEEE Trans. Magn., Vol. 47, No. 10, pp. 2395-2398, 2011. https://doi.org/10.1109/TMAG.2011.2155636
  25. F. Caricchi, F. Crescimbini, O. Honorati, G. Lo Bianco, and E. Santini, "Performance of coreless-winding axial-flux permanent-magnet generator with power output at 400 Hz, 3000 r/min," IEEE Trans. Ind. Appl., Vol. 34, No. 6, pp. 1263-1269, 1998. https://doi.org/10.1109/28.739003
  26. S. E. Jo, M. S. Kim, and Y. J. Kim, "Electromagnetic human vibration energy harvester comprising planar coils," Electron. Lett., Vol. 48, No. 14, pp. 874-875, Jul. 2012. https://doi.org/10.1049/el.2012.0969
  27. P. P. Proynov, G. D. Szarka, B. H. Stark, and N. McNeill, "The effect of switching frequency, duty ratio, and dead times on a synchronous boost rectifier for low power electromagnetic energy harvesters," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 667-674, 2012.
  28. P. J. Grbovie, P. Delarue, and P. Le Moigne, "A novel three-phase diode boost rectifier using hybrid half-DC-bus-voltage rated boost converter," IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 131-1329, 2011. https://doi.org/10.1109/TIE.2010.2050757