Browse > Article
http://dx.doi.org/10.6113/JPE.2017.17.4.1117

Utilization of Active Diodes in Self-powered Sensorless Three-phase Boost-rectifiers for Energy Harvesting Applications  

Tapia-Hernandez, Alejandro (Instrumentation and Driver HMI, Continental Automotive)
Ponce-Silva, Mario (Centro Nacional de Investigacion y Desarrollo Tecnologico)
Olivares-Peregrino, Victor Hugo (Centro Nacional de Investigacion y Desarrollo Tecnologico)
Valdez-Resendiz, Jesus Elias (Tecnologico de Monterrey)
Hernandez-Gonzalez, Leobardo (Instituto Politecnico Nacional ESIME Culhuacan)
Publication Information
Journal of Power Electronics / v.17, no.4, 2017 , pp. 1117-1126 More about this Journal
Abstract
The main contribution of this paper is the use of sensorless active diodes to generate the gate signals for a three-phase boost-rectifier with a self-powered control scheme. The sensorless operation is achieved making use of the gate control signals generated by the active diode schemes on each of the switching devices using a pulse width half-controlled boost rectifier modulation technique (PWM-HCBR). The proposed scheme synchronizes the gate control signals with a three phase voltage supply. Autonomous operation is obtained making use of the output DC bus to feed the control circuitry, the active diodes and the driver circuitry. The three-phase boost-rectifier is supplied by a three-phase permanent magnet electric generator powered by a solar concentrator dish with variable voltage and variable frequency conditions. Experimental results report an efficiency of up to 94.6% for 25 W and an input of 3.6 V peak per phase with 450.
Keywords
Active diodes; Boost-rectifier; Energy harvesting;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 H. Wu, J. Zhang, X. Qin, T. Mu, and Y. Xing, "Secondary-side-regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface," Power Electronics, IEEE Transactions on, Vol. 31, No. 7. pp. 4847-4860, 2016.
2 H. Wang, Y. Tang, and A. Khaligh, "A bridgeless boost rectifier for low-voltage energy harvesting applications," IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 5206-5214, 2013.   DOI
3 Y. Li, Z. Zhu, Y. Yang, and C. Zhang, "An input-powered high-efficiency interface circuit with zero standby power in energy harvesting systems," J. Power Electron., Vol. 15, No. 4, pp. 1131-1138, 2015.   DOI
4 E. Dallago, A. Danioni, M. Marchesi, V. Nucita, and G. Venchi, "A self-powered electronic interface for electromagnetic energy harvester," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3174-3182, 2011.   DOI
5 D. Vasic, Y. Y. Chen, and F. Costa, "Design of self-powering part of SSHI interface for piezoelectric energy harvesting," Electron. Lett., Vol. 49, No. 4, pp. 288-290, Feb. 2013.   DOI
6 S. H. Song, S. Kang, K. Park, S. Shin, and H. Kim, "Applications of mems-mosfet hybrid switches to power management circuits for energy harvesting systems," J. Power Electron., Vol. 12, No. 6, pp. 954-959, 2012.   DOI
7 C. Gong, Y. Fan, Z. Wei, X. Chen, and J. Chen, "Modified one-cycle-controlled three-phase pulse-width modulation rectifiers under low-output DC voltage conditions," IET Power Electron., Vol. 7, No. 3, pp. 753-763, Mar. 2014.   DOI
8 X. Xie, C. P. Liu, F. N. K. Poon, and M. H. Pong, "The active diode - Current-driven synchronous rectifier," in China Beijing International Power Technology Forum, 2002.
9 D. P. Arnold, P. Galle, F. Herrault, S. Das, J. H. Lang, and M. G. Allen, "A self-contained, flow-powered microgenerator system," Tech. Dig. 5th Int. Workshop Micro Nanotechnology For Power Generation and Energy Conversion Apps. (PowerMEMS 2005), 2005.
10 Y. Rao and D. P. Arnold, "Input-powered energy harvesting interface circuits with zero standby power," 2011 Twenty-Sixth Annu. IEEE Appl. Power Electron. Conf. Expo., pp. 1992-1999, 2011.
11 C. H. Lu, Y. J. Wang, C. K. Sung, and P. C. P. Chao, "A hula-hoop energy-harvesting system," IEEE Trans. Magn., Vol. 47, No. 10, pp. 2395-2398, 2011.   DOI
12 F. Caricchi, F. Crescimbini, O. Honorati, G. Lo Bianco, and E. Santini, "Performance of coreless-winding axial-flux permanent-magnet generator with power output at 400 Hz, 3000 r/min," IEEE Trans. Ind. Appl., Vol. 34, No. 6, pp. 1263-1269, 1998.   DOI
13 D. Krahenbuhl, C. Zwyssig, K. Bitterli, M. Imhof, and J. W. Kolar, "Evaluation of ultra-compact rectifiers for low power, high-speed, permanent-magnet generators," in Annual Conference of IEEE Industrial Electronics, 2009, No. Cm, pp. 448-455.
14 E. Lefeuvre, D. Audigier, C. Richard, and D. Guyomar, "Buck-boost converter for sensorless power optimization of piezoelectric energy harvester," IEEE Trans. Power Electron., Vol. 22, No. 5, pp. 2018-2025, Sep. 2007.   DOI
15 S. E. S., K. Chatterjee, and S. Bandyopadhyay, "One-cycle-controlled single-stage single-phase voltage-sensorless grid-connected PV system," IEEE Trans. Ind. Electron., Vol. 60, No. 3, pp. 1216-1224, Mar. 2013.   DOI
16 D. Krahenbuhl, C. Zwyssig, and J. W. Kolar, "Half-controlled boost rectifier for low-power high-speed permanent-magnet generators," IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5066-5075, 2011.   DOI
17 H. J. Kim, G. B. Chung, and J. Choi, "Resonant pulse power converter with a self-switching technique," J. Power Electron., Vol. 10, No. 6, pp. 784-791, 2010.   DOI
18 M. K. Senesky and S. R. Sanders, "A millimeter-scale electric generator," IEEE Trans. Ind. Appl., Vol. 44, No. 4, pp. 1143-1149, Jul. 2008.   DOI
19 P. P. Proynov, G. D. Szarka, B. H. Stark, and N. McNeill, "The effect of switching frequency, duty ratio, and dead times on a synchronous boost rectifier for low power electromagnetic energy harvesters," in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 667-674, 2012.
20 S. E. Jo, M. S. Kim, and Y. J. Kim, "Electromagnetic human vibration energy harvester comprising planar coils," Electron. Lett., Vol. 48, No. 14, pp. 874-875, Jul. 2012.   DOI
21 D. Maurath, P. F. Becker, D. Spreemann, and Y. Manoli, "Efficient energy harvesting with electromagnetic energy transducers using active low-voltage rectification and maximum power point tracking," IEEE J. Solid-State Circuits, Vol. 47, No. 6, pp. 1369-1380, 2012.   DOI
22 G. Chung and K. D. T. Ngo, "Analysis of an AC/DC resonant pulse power converter for energy harvesting using a micro piezoelectric device," J. Power Electron., Vol. 5, No. 4, pp. 247-256, 2005.
23 S. Cheng, Y. Jin, Y. Rao, and D. P. Arnold, "An active voltage doubling ac/dc converter for low-voltage energy harvesting applications," IEEE Trans. Power Electron., Vol. 26, No. 8, pp. 2258-2265, 2011.   DOI
24 P. J. Grbovie, P. Delarue, and P. Le Moigne, "A novel three-phase diode boost rectifier using hybrid half-DC-bus-voltage rated boost converter," IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 131-1329, 2011.   DOI
25 M. Ben Said, M. W. Naouar, I. Bahri, E. Monmasson, M. Merai, M. Douma, and I. Slama-Belkhodja, "Full system on programmable chip solution for DPC control of three phase PWM boost rectifier," IECON Proc. (Industrial Electron. Conf., pp. 3067-3072, 2012.
26 G. D. Szarka, N. McNeill, P. Proynov, and B. H. Stark, "Switched-capacitor power sensing in low-power energy harvesting systems," Electron. Lett., Vol. 49, No. 2, pp. 151-152, Jan. 2013.   DOI
27 G. D. Szarka, S. G. Burrow, and B. H. Stark, "UltraLow power, fully autonomous boost rectifier for electromagnetic energy harvesters," IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3353-3362, 2013.   DOI
28 S. S. Hashemi, M. Sawan, and Y. Savaria, "A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices," IEEE Trans. Biomed. Circuits Syst., Vol. 6, No. 4, pp. 326-335, 2012.   DOI