DOI QR코드

DOI QR Code

A Brief Review on Strategies for Improving UV and Humidity Stability of Perovskite Solar Cells Towards Commercialization

페로브스카이트 태양전지 상용화를 위한 자외선 및 수분 안정성 향상 전략

  • Hwang, Eunhye (Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology) ;
  • Kwon, Tae-Hyuk (Department of Chemistry and Center for Wave Energy Materials, Ulsan National Institute of Science and Technology)
  • 황은혜 (화학과 및 파동 에너지 재료 연구센터, 울산과학기술원) ;
  • 권태혁 (화학과 및 파동 에너지 재료 연구센터, 울산과학기술원)
  • Received : 2022.03.11
  • Accepted : 2022.04.12
  • Published : 2022.06.30

Abstract

With rapid growth in light-harvesting efficiency from 3.8 to 25.8%, organic-inorganic hybrid perovskite solar cells (PSCs) have attracted great attention as promising photovoltaic devices. However, despite of their outstanding performance, the commercialization of PSCs has been suffered from severe stability issues, especially for UV and humidity: (i) UV irradiation towards PSCs is able to lead UV-induced decomposition of perovskite films or catalytic reactions of charge-transporting layers, and (ii) exposure to surrounding humidity causes irreversible hydration of perovskite layers by the penetration of water molecules, resulting considerable decrease in their power-conversion efficiency (PCE). This review investigates current status of strategies to enhance UV and humidity stability of PSCs in terms of UV-management and moisture protection, respectively. Furthermore, the multifunctional approach to increase long-term stability as well as performance is discussed as advanced research directions for the commercialization of PSCs.

Keywords

Acknowledgement

본 연구는 울산과학기술원(UNIST)의 재원으로 U-K브랜드 육성사업의 지원을 받아 수행되었습니다(1.220026.01).

References

  1. Kojima, A., Teshima, K., Shirai, Y. and Miyasaka, T., "Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells," J. Am. Chem. Soc., 131, 6050-6051 (2009). https://doi.org/10.1021/ja809598r
  2. Min, H., Lee, D. Y., Kim, J., Kim, G., Lee, K. S., Kim, J., Paik, M. J., Kim, Y. K., Kim, K. S., Kim, M. G., Shin, T. J., and Seok, S. I., "Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes," Nature, 598, 444-450 (2021). https://doi.org/10.1038/s41586-021-03964-8
  3. Saki, Z., Byranvand, M. M., Taghavinia, N., Kedia, M., and Saliba, M., "Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells," Energy Environ. Sci., 14, 5690-5722 (2021). https://doi.org/10.1039/D1EE02018H
  4. Sum, T. C., Chen, S., Xing, G., Liu, X., and Wu, B., "Energetics and dynamics in organic-inorganic halide perovskite photovoltaics and light emitters," Nanotechnology, 26, 342001 (2015). https://doi.org/10.1088/0957-4484/26/34/342001
  5. Herz, L. M., "Charge-Carrier Mobilities in Metal Halide Perovskites: Fundamental Mechanisms and Limits," ACS Energy Lett., 2, 1539-1548 (2017). https://doi.org/10.1021/acsenergylett.7b00276
  6. Ito, S., Tanaka, S., Manabe, K., and Nishino, H., "Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells," J. Phys. Chem. C, 118, 30, 16995-17000 (2014). https://doi.org/10.1021/jp500449z
  7. Ji, J., Liu, X., Jiang, H., Duan, M., Liu, B., Huang, H., Wei, D., Li, Y., and Li, M., "Two-Stage Ultraviolet Degradation of Perovskite Solar Cells Induced by the Oxygen Vacancy-Ti4+ States," iScience, 23, 101013 (2020). https://doi.org/10.1016/j.isci.2020.101013
  8. Li, B., Li, Y., Zheng, C., Gao, D., and Huang, W., "Advancements in the stability of perovskite solar cells: degradation mechanisms and improvement approaches," RSC Adv., 6, 38079-38091 (2016). https://doi.org/10.1039/C5RA27424A
  9. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Gratzel, M., and Han, L., "Efficient and stable large-areaperovskite solar cells with inorganiccharge extraction layers," Science, 350, 944-948 (2015). https://doi.org/10.1126/science.aad1015
  10. Tan, F., Saidaminov, M. I., Tan, H., Fan, J. Z., Wang, Y., Yue, S., Wang, X., Shen, Z., Li, S., Kim, J., Gao, Y., Yue, G., Liu, R., Huang, Z., Dong, C., Hu, X., Zhang, W., Wang, Z., Qu, S., Wang, Z., and Sargent, E. H., "Dual Coordination of Ti and Pb Using Bilinkable Ligands Improves Perovskite Solar Cell Performance and Stability," Adv. Funct. Mater., 30, 2005155 (2020). https://doi.org/10.1002/adfm.202005155
  11. Sun, Y., Fang, X., Ma, Z., Xu, L., Lu, Y., Yu, Q., Yuan, N., and Ding, J., "Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer," J. Mater. Chem. C, 5, 8682-8687 (2017). https://doi.org/10.1039/C7TC02603J
  12. Tsai, C.-H., Li, N., Lee, C.-C., Wu, H.-C., Zhu, Z., Wang, L., Chen, W.-C., Yan, H., and Chueh, C.-C., "Efficient and UV-stable perovskite solar cells enabled by side chain-engineered polymeric hole transporting layers," J. Mater. Chem. A, 6, 12999-13004 (2018). https://doi.org/10.1039/c8ta03608j
  13. An, Y., Wang, C., Cao, G., and Li, X., "Heterojunction Perovskite Solar Cells: OptoElectro-Thermal Physics, Modeling, and Experiment," ACS Nano, 14, 5017-5026 (2020). https://doi.org/10.1021/acsnano.0c01392
  14. Trupke, T., Green, M. A., and Wurfel, P., "Improving solar cell efficiencies by down-conversion of high-energy photons," J. Appl. Phys. 92, 1668 (2002). https://doi.org/10.1063/1.1492021
  15. Florencio, L. A., Gomez-Malagon, L. A., Lima, B. C., Gomes, A. S.L., Garcia, J.A.M., and Kassab, L. R.P., "Efficiency enhancement in solar cells using photon down-conversion in Tb/Yb-doped tellurite glass," Sol. Energy Mater. Sol. Cells, 157, 468-475 (2016). https://doi.org/10.1016/j.solmat.2016.07.024
  16. Wang, H.-P. and He, Jr-H., "Toward Highly Efficient Nanostructured Solar Cells Using Concurrent Electrical and Optical Design," Adv. Energy Mater., 7, 1602385 (2017). https://doi.org/10.1002/aenm.201602385
  17. Mora, M.B., Amelines-Sarria, O., Monroy, B.M., Hernandez-Perez, C.D., and Lugo, J.E., "Materials for downconversion in solar cells: Perspectives," Sol. Energy Mater Sol. Cells, 165, 59-71 (2017). https://doi.org/10.1016/j.solmat.2017.02.016
  18. Jiang, L., Chen, W. Zheng, J., Zhu, L., Mo, L., Li, Z., Hu, L., Hayat, T., Alsaedi, A. Zhang, C., and Dai, S., "Enhancing the Photovoltaic Performance of Perovskite Solar Cells with a Down-Conversion Eu-Complex," ACS Appl. Mater. Interfaces, 9, 26958-26964 (2017). https://doi.org/10.1021/acsami.7b10101
  19. Rahman, N. U., Khan, W. U., Khan, S., Chen, X., Khan, J., Zhao, J., Yang, Z., Wu, M., and Chi, Z., "A promising europium-based down conversion material: organic-inorganic perovskite solar cells with high photovoltaic performance and UV-light stability," J. Mater. Chem. A, 7, 6467-6474 (2019). https://doi.org/10.1039/c9ta00551j
  20. Tai, Q., You, P., Sang, H., Liu, Z., Hu, C., Chan, H. L.W., and Yan, F., "Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity," Nat. Commun., 7, 11105 (2016). https://doi.org/10.1038/ncomms11105
  21. Idigoras, J., Aparicio, F. J., Contreras-Bernal, L., Ramos-Terron, S., Alcaire, M., Sanchez-Valencia, J. R., Borras, A., Barranco, A., and Anta, J. A., "Enhancing Moisture and Water Resistance in Perovskite Solar Cells by Encapsulation with Ultrathin Plasma Polymers," ACS Appl. Mater. Interfaces, 10, 11587-11594 (2018). https://doi.org/10.1021/acsami.7b17824
  22. Hou, Y., Zhou, Z. R., Wen, T. Y., Qiao, H. W., Lin, Z. Q., Ge, B., and Yang, H. G., "Enhanced moisture stability of metal halide perovskite solar cells based on sulfur-oleylamine surface modification," Nanoscale Horiz., 4, 208-213 (2019). https://doi.org/10.1039/c8nh00163d
  23. Bella, F., Griffini, G., Correa-Baena, J.-P., Saracco, G., Gratzel, M., Hagfeldt, A., Turri, S., and Gerbaldi, C., "Improving efficiency and stability ofperovskite solar cells withphotocurable fluoropolymers," Science, 354, 203-206 (2016). https://doi.org/10.1126/science.aah4046
  24. Hwang, E., Kim, H., Lee, S.-H., Seo, J. H., Kim, H.-T., Lee, C., Jang, S.-Y., Seo, K., Kwon, T.-H., "Fabrication of Water-Repellent Platinum(II) Complex-Based Photon Downshifting Layers for Perovskite Solar Cells by Ultrasonic Spray Deposition," Adv. Energy Mater., 10, 2001238 (2020). https://doi.org/10.1002/aenm.202001238