• 제목/요약/키워드: Solar cell application

Search Result 328, Processing Time 0.023 seconds

Synthesis of Nanopowders by Hydrothermal Method and their Application to Dye-sentisized Solar Cell Materials (수열합성을 이용한 나노분말 합성 및 연료감응태양전지 응용)

  • Lim, JinYoung;Ahn, Jeongseok;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.25 no.4
    • /
    • pp.309-315
    • /
    • 2018
  • In the present work, we synthesize nano-sized ZnO, $SnO_2$, and $TiO_2$ powders by hydrothermal reaction using metal chlorides. We also examine the energy-storage characteristics of the resulting materials to evaluate the potential application of these powders to dye-sensitized solar cells. The control of processing parameters such as pressure, temperature, and the concentration of aqueous solution results in the formation of a variety of powder morphologies with different sizes. Nano-rod, nano-flower, and spherical powders are easily formed with the present method. Heat treatment after the hydrothermal reaction usually increases the size of the powder. At temperatures above $1000^{\circ}C$, a complete collapse of the shape occurs. With regard to the capacity of DSSC materials, the hydrothermally synthesized $TiO_2$ results in the highest current density of $9.1mA/cm^2$ among the examined oxides. This is attributed to the fine particle size and morphology with large specific surface area.

The Preparation of Alumina Particles Wrapped in Few-layer Graphene Sheets and Their Application to Dye-sensitized Solar Cells

  • Ahn, Kwang-Soon;Seo, Sang-Won;Park, Jeong-Hyun;Min, Bong-Ki;Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1579-1582
    • /
    • 2011
  • Alumina particles wrapped in few-layer graphene sheets were prepared by calcining aluminum nitride powders under a mixed gas flow of carbon monoxide and argon. The graphene sheets were characterized by powder X-ray diffraction (XRD), Raman spectroscopy, electron energy loss spectroscopy, and high-resolution transmission electron microscopy. The few-layer graphene sheets, which wrapped around the alumina particles, did not exhibit any diffraction peaks in the XRD patterns but did show three characteristic bands (D, G, and 2D bands) in the Raman spectra. The dye-sensitized solar cell (DSSC) with the alumina particles wrapped in few-layer graphene sheets exhibited significantly improved overall energy-conversion efficiency, compared to conventional DSSC, due to longer electron lifetime.

Synthesis of TCO-Iess Dye Sensitized Solar Cell (TCO-Iess 구조 염료 태양전지의 제작과 광전변환 특성)

  • Heo, Jong-Hyun;Park, Sun-Hee;Kwak, Dong-Joo;Sung, YouI-Moon;Song, Jae-Eun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.251-254
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient and low-cost solar cell application. The TCO-Iess DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3{^-}$ through the mesh hole. Thin Ti-mesh (${\sim}40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF

A Study on Fabrication and Properties the GaAs/Si Solar Cell using MOCVD (MOCVD를 이용한 GaAs/Si태양전지의 제작과 특성에 관한 연구)

  • 신일철;임중열;차인수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.1-7
    • /
    • 1997
  • The goals of the present study lie in presenting the direction of researches and developments for GaAs based solar cells, as well as in taking a step toward the establishment of GaAs MOCVD technologies. On the other hand, the GaAs on Si substrates has been recognized as a lightweight alternative to pure GaAs substrate for space application, because its density is less than the 7alf of GaAs or Ge. So, GaAs/Si has twofold weight advantage to GaAs monolithic cell. It was concluded that the development the development of MOCVD technologies should be ahead of GaAs solar cells.

  • PDF

An Overview Of Nanonet Based Dye-Sensitized Solar Cell (DSSC) In Solar Cloth

  • Othman, Mohd Azlishah;Ahmad, Badrul Hisham;Amat, Noor Faridah
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.635-646
    • /
    • 2013
  • This technical paper contains the information of the Dye-Sensitized Solar Cells (DSSC) working principal where diffusion mechanism acts as electron transport to absorb the sunlight energy to generate the electrical energy. DSSC is photo electrochemical cell that implements the application of photosynthesis process. The performance of electron transport in DSSC has been reviewed in order to enhance the performance and efficiency of electron transport. The improvement of the electron transport also discussed in this paper.

A Review of Wet Chemical Etching of Glasses in Hydrofluoric Acid based Solution for Thin Film Silicon Solar Cell Application

  • Park, Hyeongsik;Cho, Jae Hyun;Jung, Jun Hee;Duy, Pham Phong;Le, Anh Huy Tuan;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.75-82
    • /
    • 2017
  • High efficiency thin film solar cells require an absorber layer with high absorption and low defect, a transparent conductive oxide (TCO) film with high transmittance of over 80% and a high conductivity. Furthermore, light can be captured through the glass substrate and sent to the light absorbing layer to improve the efficiency. In this paper, morphology formation on the surface of glass substrate was investigated by using HF, mainly classified as random etching and periodic etching. We discussed about the etch mechanism, etch rate and hard mask materials, and periodic light trapping structure.

Structural and Electrical Properties of Aluminum Doped ZnO Electrodes Prepared by Atomic Layer Deposition for Application in Organic Solar Cells (유기태양전지 응용을 위한 원자층 증착 방식 제작의 알루미늄이 도핑 된 ZnO의 전기적, 구조적 특징)

  • Seo, Injun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.1-5
    • /
    • 2014
  • Transparent and conducting aluminum-doped ZnO electrodes were fabricated by atomic layer deposition methods. The electrode showed the lowest resistivity of $5.73{\times}10^{-4}{\Omega}cm$ at a 2.5% cyclic layer deposition ratio of Trimethyl-aluminum and Diethyl-zinc chemicals. The electrodes showed minimum resistivity when deposited at a temperature of $225^{\circ}C$. The electrode also showed optical transmittance of about 92% at 300 nm. An organic solar cell made with a 300-nm-thick aluminum-doped ZnO electrode exhibited 2.0% power conversion efficiency.

A Study on the Application of Thin Film Passivation and Crystalline Silicon Solar Cells Using PECVD Process (PECVD 공정을 이용한 후면 패시베이션 및 결정질 실리콘 태양전지 적용에 관한 연구)

  • Kim, Kwan-Do
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.2
    • /
    • pp.68-71
    • /
    • 2020
  • In this study, SiNx and Al2O3 thin film was manufactured using PECVD deposition process and applied to crystalline silicon solar cells, resulting in 16.7% conversion efficiency. The structural improvement experiment of the rear electrode resulted in a 1.7% improvement in conversion efficiency compared to the reference cell by reducing the recombination rate of minority carriers and increasing the carrier lifetime by forming a passivation layer consisting of SiNx and Al2O3 thin films through the PECVD process.

Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell (기판 온도 변화에 따라 증착되어진 ZnO 박막의 특성과 유기 태양전지의 버퍼층으로의 응용)

  • Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.10
    • /
    • pp.648-651
    • /
    • 2015
  • The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.

Direct Growth of TiO2-Nanotubes on Ti-Mesh Substrate for Photoanode Application to Dye-sensitized Solar Cell

  • Park, Min-Woo;Lee, Dong-Hoon;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.14-19
    • /
    • 2010
  • Partial anodic oxidation of Ti-mesh with a wire diameter of ~200[${\mu}m$] produces self-aligned $TiO_2$ nanotube arrays (~50[${\mu}m$] in length) on Ti-mesh substrate. The electrolyte used for anodic oxidation was an ethylene glycol solution with an addition of 1.5 vol. % $H_2O$ and 0.2 wt. % $NH_4F$. A dye-sensitized solar cell utilizing the photoanode structure of $TiO_2$-nanotube/Ti-mesh was fabricated without a transparent conducting oxide (TCO) layer, in which Ti-mesh replaced the role of TCO. The 1.93[%] photoconversion efficiency was low, which can be attributed to both insufficient dye molecules attachment and limited electrolyte flow to dye molecules. The optimized nanotube diameter and length as well as the $TiCl_4$ treatment can improve cell performance.