Browse > Article
http://dx.doi.org/10.4313/JKEM.2015.28.10.648

Characteristics of ZnO Thin Films Deposited with the Variation of Substrate Temperature and the Application As Buffer Layer in Organic Solar Cell  

Park, Yong Seob (Department of Photoelectronics, Chosun College of Science and Technology)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.28, no.10, 2015 , pp. 648-651 More about this Journal
Abstract
The characterizations of zinc oxide (ZnO) buffer layers grown by unbalanced magnetron (UBM) sputtering under various substrate temperatures for inverted organic solar cells (IOSCs) were investigated. UBM sputter grown ZnO films exhibited higher crystallinity with increasing the substrate temperature, resulting in uniform and large grain size. Also, the electrical properties of ZnO films are improved with increasing substrate temperature. In the results, the performance of IOSCs critically depended on the substrate temperature during the film growth because the crystalllinity of the ZnO film affect the carrier mobility of the ZnO film.
Keywords
ZnO; Unbalanced magnetron sputtering; Inverted organic solar cell; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. R. Forrest, MRS Bulletin, 30, 28 (2005). [DOI: http://dx.doi.org/10.1557/mrs2005.5]   DOI
2 M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Advanced Materials, 18, 789 (2006). [DOI: http://dx.doi.org/10.1002/adma.200501717]   DOI
3 M. D. Irwin, D. B. Buchholz, A. W. Hains, R.P.H. Chang, and T. J. Marks, Proc. of the National Academy of Sciences, 105, 2783 (2008). [DOI: http://dx.doi.org/10.1073/pnas.0711990105]   DOI
4 J. A. Koster, V. D. Mihailetchi, and P.W.M. Blom, Appl. Phys. Lett., 88, 093511 (2006). [DOI: http://dx.doi.org/10.1063/1.2181635]   DOI   ScienceOn
5 A. Dhanabalan, J.K.J. van Duren, P. A. van Hal, J.L.J. van Dongen, and R.A.J. Janssen, Adv. Funct. Mater., 11, 255 (2001). [DOI: http://dx.doi.org/10.1002/1616-3028(200108)11:4<255::AID-ADFM255>3.0.CO;2-I]   DOI
6 R. Pacios, D.D.C. Bradley, J. Nelson, and C. J. Brabec, Synth. Met., 137, 1469 (2003). [DOI: http://dx.doi.org/10.1016/S0379-6779(02)01182-7]   DOI
7 M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett., 89, 143517 (2006). [DOI: http://dx.doi.org/10.1063/1.2359579]   DOI
8 F. C. Krebs and K. Norrman, Progress in Photovoltaics, 15, 697 (2007). [DOI: http://dx.doi.org/10.1002/pip.794]   DOI
9 K. Norrman, S. A. Gevorgyan, and F. C. Krebs, Sol. Energ. Matater. Sol. Cells, 92, 686 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.01.005]   DOI
10 H. W. Kim and N. H. Kim, Mater. Sci. Eng. B, 103, 297 (2003). [DOI: http://dx.doi.org/10.1016/S0921-5107(03)00281-2]   DOI
11 V. Tvarozek, I. Novotny, P. Sutta, S. Flickyngerova, K. Schtereva, and E. Vavrinsky, Thin Solid Films, 515, 8756 (2007). [DOI: http://dx.doi.org/10.1016/j.tsf.2007.03.125]   DOI
12 S. Flickyngerova, K. Shtereva, V. Stenova, D. Hasko, I. Novotny, V. Tvarozek, P. Sutta, and E. Varinsky, Appl. Surf. Sci., 254, 3643 (2008). [DOI: http://dx.doi.org/10.1016/j.apsusc.2007.10.105]   DOI
13 J. H. Lee, B. Hong, and Y. S. Park, Thin Solid Films, 547, 3 (2013). [DOI: http://dx.doi.org/10.1016/j.tsf.2013.06.045]   DOI
14 S. E. Parka and D. H. Kim, Sol. Energ. Matater. Sol. Cells, 93, 1020 (2009). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.11.033]   DOI
15 M. Shimizu, T. Horii, T. Shiosaki, and A. Kawabata, Thin Solid Films, 96, 149 (1982). [DOI: http://dx.doi.org/10.1016/0040-6090(82)90613-7]   DOI