• Title/Summary/Keyword: Solar Absorber

Search Result 242, Processing Time 0.025 seconds

Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells (Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과)

  • Lee, In Jae;Jo, Eunae;Jang, Jun Sung;Lee, Byeong Hoon;Lee, Dong Min;Kang, Chang Hyun;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

Efficiency of a Direct Absorption Solar Collector using Ag Nanofluids Synthesized by Chemical Reduction Method (화학적 환원법으로 제조된 은나노유체를 사용한 직접흡수식 태양열 집열기의 효율)

  • Lee, Seung-Hyun;Park, Yong-Jun;Choi, Tae Jong;Jang, Seok Pil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.65-72
    • /
    • 2014
  • In this paper, the water-based Ag nanofluids are synthesized by the chemical reduction method and their extinction coefficients are measured by an in-house developed measurement device. The Ag nanofluids are manufactured by the chemical reduction method with the mixing of silver nitrate ($AgNO_3$) and sodium borohydride ($NaBH_4$) in an aqueous solution of polyvinyl pyrrolidone (PVP). The extinction coefficients of Ag nanofluids are measured by means of the in-house developed apparatus at a wavelength of 632.8nm according to the particle volume fractions. The results show that the extinction coefficient of water-based Ag nanofluids increases with the increase of nanoparticle concentrations. Finally, the temperature field and efficiency of direct absorption solar collector (DASC) are analytically estimated based on the measured extinction coefficient of water-based Ag nanofluids. The results indicate that the direct absorption solar collectors using nanofluids have the feasibility to improve the efficiency of conventional flat-plate solar collectors without using an absorber plate.

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.

Research on an Optimal Trickling Surface of the Regenerator in a Solar Air-conditioning System (태양열 이용 냉난방 공조시스템중 재생기의 최적 재생면 구조에 관한 연구)

  • Kim, B.C.;Choi, K.H.;Kum, J.S.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.185-195
    • /
    • 1998
  • The high viscosity of a LiCl(lithium chloride) solution as an absorbent in a solar energy regenerator causes a channeling phenomenon on the solar powered absorber plate surface when the solution is trickling down for regenerating itself. As this channeling phenomenon affects badly the heat and mass transfer, it is pertinent that this phenomenon be studied. Since regenerating performance of the solar energy regenerator depends on how the solution uniformly flows on the plate surface, an experiment on the structure of the plate surface for a model regenerator was conducted. Various shapes and structures of the plat surface down which the LiCl solution trickled were tested, and it was found that a tiered surface showed the highest water evaporation rate leaving more potential energy concentrating LiCl on the plate. It was also observed that the water evaporation rate depended largely on the pitch and height of the disturbing rods. In addition, the wider the contact area is and the longer the solution's flow time, the better the solar energy regenerator's performance.

  • PDF

Properties of the surface of the CIGS thin films after sulfurization (황화 열처리를 통한 CIGS 광흡수층의 표면 특성 변화 연구)

  • Kim, Ji Hye;Ko, Young Min;Larina, Liudmila;Ahn, Byung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.1-99.1
    • /
    • 2010
  • Many efforts on the surface sulfurization of $Cu(InGa)Se_2$ (CIGS)thin films have been reported as techniques to improve CIGS solar cell performance. We have investigated the sulfurization technique using the sulfur vapor. The co-evaporated $Cu(In,Ga)Se_2$ tin film was used for sulfurization. A thin $Cu(In,Ga)(S,Se)_2$ layer was grown on the surface of the CIGS thin film after high-temperature annealing in sulfur vapor. The structural and compositional properties of the thin films were studied by XRD, EDS and AES analysis. The obtained results revealed that the surface modification technique is promising method to S incorporated into CIGS absorber.

  • PDF

A Study on Increasing Thermal Performance of Solar Collector by Utilizing Honeycomb Structures (Honeycomb을 利용한 太陽熱 集熱器의 熱效率增大에 관한 硏究)

  • 김종보;박영칠
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.4
    • /
    • pp.392-397
    • /
    • 1983
  • In the present study, improvement of the solar collector performance by utilizing honeycomb structures is being investigated. Installation of honeycomb structures inside of the collector induces the suppression of would-be natural convection phenomena within the collector enclosure spacing. It also minimizes infrared radiation heat loss from the collector absorber plate to the surrounding. Experiments have been carried out a collector with 40*20mm rectangular honeycombs, 20*20mm square honeycombs and without honeycombs. The results are presented for the three cases for comparisons. The collector model has been installed at various tilt angle from 15.deg. to 60.deg. measured from the ground. The influence of the tilt angle to the heat performance of the collector is also presented.

A Study on the Air System for Space Heating (공기식 집열시스템에 의한 실내 난방 연구)

  • Chun, Won-Gee;Lim, Sang-Hoon;Jeon, Myung-Seok;Yoon, Jong-Ho
    • Solar Energy
    • /
    • v.12 no.1
    • /
    • pp.34-39
    • /
    • 1992
  • The present study has carried out thermal performance evaluation of air systems for space heating in Daejeon by the f-chart method. The various effects with the change in air flow rate, number of glazings, storage capacity of pebble bed, and coating materials of absorber plate are analyzed with regard to the effectiveness of air systems for space heating. A comparison is also made with liquid systems under the same operating conditions.

  • PDF

$CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process (스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조)

  • Moon, Dong-Gwan;Ahn, Se-Jin;Yun, Jae-Ho;Gwak, Ji-Hye;Lee, Huy-Dek;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

Characterization of Hydrazine Solution Processed Multi-layered CuInSe2 Thin Films (하이드라진 용액법으로 형성된 CuInSe2 다층 박막 분석)

  • Chung, Choong-Heui
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.4
    • /
    • pp.169-173
    • /
    • 2015
  • $CuInSe_2$ thin films which have been widely used for thin solar cells as a light absorber were prepared by hydrazine solution processing, and their microstructural properties were investigated. Hydrazine $CuInSe_2$ precursor solutions were prepared by dissolving $Cu_2S$, S, $In_2Se_3$ and Se powder in hydrazine solvent. Multilayer $CuInSe_2$ chalcopyrite phase thin films were prepared by repeating spin-coating process using the precursor solution. Unfortunately, the presence of the interfaces between each $CuInSe_2$ layer formed by multi-layer coating impeded grain growth across the interface. Here, by doing simple interface engineering to solve the limited grain growth issue, the large grained (${\sim}1{\mu}m$) $CuInSe_2$ thin films were obtained.