References
- Lee J. H., Lee S. H., Choi C. J., Jang S. P. and Choi S.U.S., A review of thermal conductivity data, mechanisms and models for nanofluids, International Journal of Micro-Nano Scale Transport, Vol. 1, No. 4, pp. 269-322, 2010 https://doi.org/10.1260/1759-3093.1.4.269
-
Duangthongsuk W. and Wongwises S., Heat transfer enhancement and pressure drop characteristics of
$TiO_{2}$ -water nanofluid in a double-tube counter flow heat exchanger, International Journal of Heatand Mass Transfer, Vol. 52, No. 7-8, pp. 2059-2067, 2009 https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023 -
Peyghambarzadeh S. M., Hashemabadi S. H., Jamnani M. S. and HoseiniS. M., Improving the cooling performance of automobile radiator with
$Al_{2}O_{3}/water$ nanofluid, Applied Thermal Engineering, Vol. 31, No. 10, pp. 1833-1838, 2011 https://doi.org/10.1016/j.applthermaleng.2011.02.029 - DoK. H. and Jang S. P., Effect of nanofluids on the thermal performance of a flat micro heat pipe with a rectangular grooved wick, International Journal of Heat and Mass Transfer, Vol. 53, No. 9-10, pp. 2183-2192, 2010 https://doi.org/10.1016/j.ijheatmasstransfer.2009.12.020
- Otanicar T. P., Phelan P. E., Prasher R. S., Rosengarten G. and Taylor R. A., Nanofluid -based direct absorption solar collector, Journal of Renewable and Sustainable Energy, Vol. 2, No. 3, p. 033102, 2010 https://doi.org/10.1063/1.3429737
- Sani E., Barison S., Pagura C., Mercatelli L., Sansoni P., Fontani D., Jafrancesco D. and Francini F., Carbon nanohorn-based nanofluids as direct sunlight absorbers, Optics. Express, Vol. 18, No. 5, pp. 5179-5187, 2010 https://doi.org/10.1364/OE.18.005179
- Taylor R. A., Phelan P. E., Otanicar T. P., Adrian R. and Prasher R., Nanofluid optical property characterization: towards efficient directabsorption solar collectors, Nanoscale Research Letters, Vol. 6, p. 225, 2011 https://doi.org/10.1186/1556-276X-6-225
- Lee S. H. and Jang S. P., Extinction coefficient of aqueous nanofluids containing multi-walled carbon nanotubes, International Journal of Heatand Mass Transfer, Vol. 67, pp. 930-935, 2013 https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.094
- Radziuk D., Skirtach A., Sukhorukov G., Shchukin D. and Mohwald H., Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol), Macromolecular Rapid Communications, Vol. 28, No. 7, pp. 848-855, 2007 https://doi.org/10.1002/marc.200600895
- Mulfinger L., Solomon S. D., Bahadory M., Jeyarajasingam A. V., Rutkowsky S. A. and Boritz C., Synthesis and study of silver nanoparticles, Journal of Chemical Education, Vol. 84, No. 2, pp. 322-325, 2007 https://doi.org/10.1021/ed084p322
- Veeraragavan A., Lenert A., Yilbas B., Al-DiniS. and Wang E. N., Analytical model for the design of volumetric solar flow receivers, International Journal of Heatand Mass Transfer, Vol. 55, No. 4, pp. 556-564, 2012 https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.001
- Lee S. H., Kim H. J., Kim K. H. and Jang S. P., Extinction coefficient of water-based multi-walled carbon nanotube (MWCNT) nanofluids for application in Direct-Absorption Solar Collectors (DASC), Micro & Nano Letters, Vol. 9, No. 10, pp. 635-638, 2014 https://doi.org/10.1049/mnl.2014.0262
- Kalogirou S. A., Solar thermal collectors and applications, Progress in Energy and Combustion Science, Vol. 30, No. 3, pp. 231-295, 2004 https://doi.org/10.1016/j.pecs.2004.02.001
Cited by
- Extinction Coefficient of Ag Nanofluids Manufactured by Chemical Reduction Method vol.20, pp.1, 2015, https://doi.org/10.15435/JILASSKR.2015.20.1.53