• Title/Summary/Keyword: Sol-gel solution

Search Result 507, Processing Time 0.022 seconds

Characteristics of Electrospun Ag Nanofibers for Transparent Electrodes (전기방사법으로 제조된 Ag 나노섬유의 투명전극 특성)

  • Hyeon, Jae-Young;Choi, Jung-Mi;Park, Youn-Sun;Kang, Jiehun;Sok, Junghyun
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.156-161
    • /
    • 2013
  • We fabricated transparent conductive electrodes with silver (Ag) nanofibers by electrospinning process. Ag nanofibers have high aspect ratio and fused junctions which result in low sheet resistance. Electrospinning is a fast and efficient process to fabricate continuous one-dimensional (1D) nanofibers. Ag/polymer ink were prepared in polymer matrix solution by a sol-gel method. Then, Ag/polymer nanofibers precursors are heated at $200{\sim}500^{\circ}C$ in air for 2 h to eliminate partially the polymers. The topographical features of the Ag nanofibers were characterized by FE-SEM, and the electrical property was analyzed through I-V measurement system. Finally, optical property was measured using UV/VIS spectroscopy. The transparent conductive electrodes with Ag nanofibers exhibited a sheet resistance (Rs) of $250{\Omega}/sq$ at a transparency (T) of 83%. Transparent conductive films, contain the Ag nanofibers as conductive materials, have good electrical, optical, and mechanical properties. Therefore, it is expected to be useful for the application of flexible display in the future.

Fabrication and Photocatalytic Properties of SiO2-TiO2 Composite Nanofibers (SiO2-TiO2계 복합 나노섬유의 제조 및 광활성 연구)

  • Hyun, Dong Ho;Lim, Tae-Ho;Lee, Sung Wook
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.554-558
    • /
    • 2008
  • $(1-x)SiO_2-(x)TiO_2$ composite fibers with various compositions of $TiO_2$ were prepared by electrospinning their sol-gel precursors of titanium (IV) iso-propoxide (TiP), and tetraethyl orthosilicate (TEOS). The surface morphology and structure of sintered composite fibers were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), simultaneous thermogravimetric analysis-differential scanning calorimetry (TGA-DSC) and Fourier transform infrared spectroscopy (FT-IR). As the content of $TiO_2$ in $(1-x)SiO_2-(x)TiO_2$ system was increased the average diameter of composite fibers was proportionally increased. Also, the transformation of $TiO_2$ from anatase to rutile form was inhibited by the highly dispersed $TiO_2$ around $SiO_2$ particles up to $0.6SiO_2-0.4TiO_2$ composite fibers even after calcination at $1000^{\circ}C$. The photocatalytic activity of $SiO_2-TiO_2$ composite fibers was examined for the methylene blue (MB) decomposition which was confirmed using UV-vis/DRS spectra. The experiments demonstrated that the MB in aqueous solution was successfully photodegraded using $SiO_2-TiO_2$ composite nanofibers under UV-visible light irradiation.

Electrochemical Characterization of Cobalt Oxide Xerogel Electrode for Supercapacitor (수퍼커패시터용 산화코발트 건조겔전극의 전기화학적 특성)

  • Kim Han-Joo;Shin Dal-Woo;Kim Yong-Chul;Kim Seong-Ho;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2000
  • So fine cobalt oxide xerogel powders were prepared by using a unique solution chemistry associated with the sol-gel process. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as $Co(OH)_2$ up to $160^{\circ}C$ With an increase in the temperature above $200^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous $Co(OH)_2$ decomposed to form CoO that was subsequently oxidized to form crystalline Co304. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 192F1g was obtained for an electrode prepared with the $CoO_x$ Xerogel calcined at$150^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

Fabrication and characteristics of TiO2 coating solution with silica-based inorganic binder (실리카 베이스 무기 바인더 기반의 TiO2 코팅액의 제조 및 특성 평가)

  • Kang, Woo-kyu;Kim, Hye-Jin;Kim, Jin-Ho;Hwang, Kwang-Taek;Jang, Gun-Eik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.71-76
    • /
    • 2019
  • Recently, the demand of labels for product management is increasing, as the automation system becomes more common. the development of functional labels which can be used in various environments has been rapidly proceeded. In the case of a printed circuit board, barcode labels with thermal and chemical stability are generally used due to a high temperature process around $300^{\circ}C$ and chemical cleaning in the manufacturing process. However, the yellowing phenomenon of labels that can lower the resolution of printed barcode image still needs to be prevented. In this study, we prepared a composite coating layer using a silica inorganic binder and a titanium dioxide white pigment, and developed a functional labels with thermal and chemical stability. The silica inorganic binder prepared by sol-gel process was confirmed to show excellent adhesion and abrasion resistance with the polyimide film. The white coating layer could be formed on the polyimide film with mixing the silica inorganic binder and titanium dioxide white pigment. The prepared coating layer showed excellent whiteness and glossiness above $400^{\circ}C$. The excellent chemical stability of the coating layer was also confirmed by the chemical treatment with acidic (pH 1.6) and basic (pH 13.6) cleaners.

MoS2/CNFs derived from Electrospinning and Heat treatment as the Efficient Electrocatalyst for Hydrogen Eovlution Reaction in Acidic Solution (전기 방사를 이용한 1D / 2D 하이브리드 구조 고활성 MoS2 / CNF 수소 발생 촉매의 합성 및 특성 분석)

  • Lee, Jeong Hun;Park, Yoo Sei;Jang, Myeong Je;Park, Sung Min;Lee, Kyu Hwan;Choi, Woo Sung;Choi, Sung Mook;Kim, Yang Do
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.885-892
    • /
    • 2018
  • Molybdenum disulfide ($MoS_2$) based electrocatalysts have been proposed as substitutes for platinum group metal (PGM) based electrocatalyst to hydrogen evolution reaction (HER) in water electrolysis. Here, we studied $MoS_2/CNFs$ hybrid catalyst prepared by electrospinning method with heat treatment for polymer electrolyte membrane(PEM) water electrolysis to improve the HER activity. The physicochemical and electrochemical properties such as average diameter, crystalline properties, electrocatalitic activity for HER of synthesized $MoS_2/CNFs$ were investigated by the Scanning Electron Microscope (SEM), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Transmission Electron Microscopy (TEM), Raman Spectroscopy (Raman) and Linear Sweep Voltammetry (LSV). The as spun ATTM/PVP nanofibers were prepared by sol-gel and electrospinning method. Subsequently, the $MoS_2/CNFs$ was dereived from reduction heat treatment of ATTM at the ATTM/PVP nanofibers and carbonization heat treatment. Synthesized $MoS_2/CNFs$ electrocatalyst had an average diameter of $179{\pm}30nm$. We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ electrocatalyst consist of 3~4 layers from the Raman results. In addition, We confirmed that the $MoS_2$ layers in $MoS_2/CNF$ catalyst consist of 7.47% octahedral 1T phase $MoS_2$, 63.77% trigonal prismatic 2H phase $MoS_2$ with 28.75% $MoO_3$ through the XRD, Raman and XPS results. It was shown that $MoS_2/CNFs$ had the overpotential of 0.278 V at $10mA/cm^2$ and tafel slope of 74.8 mV/dec in 0.5 M sulfuric acid ($H_2SO_4$) electrolyte.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Fabrication of Silica Nanoparticles by Recycling EMC Waste from Semiconductor Molding Process and Its Application to CMP Slurry (반도체 몰딩 공정에서 발생하는 EMC 폐기물의 재활용을 통한 실리카 나노입자의 제조 및 반도체용 CMP 슬러리로의 응용)

  • Ha-Yeong Kim;Yeon-Ryong Chu;Gyu-Sik Park;Jisu Lim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.21-29
    • /
    • 2024
  • In this study, EMC(Epoxy molding compound) waste from the semiconductor molding process is recycled and synthesized into silica nanoparticles, which are then applied as abrasive materials contains CMP(Chemical mechanical polishing) slurry. Specifically, silanol precursor is extracted from EMC waste according to the ultra-sonication method, which provides heat and energy, using ammonia solution as an etchant. By employing as-extracted silanol via a facile sol-gel process, uniform silica nanoparticles(e-SiO2, experimentally synthesized SiO2) with a size of ca. 100nm are successfully synthesized. Through physical and chemical analysis, it was confirmed that e-SiO2 has similar properties compared to commercially available SiO2(c-SiO2, commercially SiO2). For practical CMP applications, CMP slurry is prepared using e-SiO2 as an abrasive and tested by polishing a semiconductor chip. As a result, the scratches that are roughly on the surface of the chip are successfully removed and turned into a smooth surface. Hence, the results present a recycling method of EMC waste into silica nanoparticles and the application to high-quality CMP slurry for the polishing process in semiconductor packaging.