• Title/Summary/Keyword: Sol formation

Search Result 312, Processing Time 0.024 seconds

Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method

  • Dubey, Prashant;Choi, Sang-Kyu;Kim, Bawl;Lee, Cheol-Jin
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.99-108
    • /
    • 2012
  • The sol-gel technique has been studied to fabricate a homogeneous Fe-Mo/MgO catalyst. Ambient effects (air, Ar, and $H_2$) on thermal decomposition of the citrate precursor have been systematically investigated to fabricate an Fe-Mo/MgO catalyst. Severe agglomeration of metal catalyst was observed under thermal decomposition of citrate precursor in air atmosphere. Ar/$H_2$ atmosphere effectively restricted agglomeration of bimetallic catalyst and formation of highly-dispersed Fe-Mo/MgO catalyst with high specific surface-area due to the formation of Fe-Mo nanoclusters within MgO support. High-quality thin-multiwalled carbon nanotubes (t-MWCNTs) with uniform diameters were achieved on a large scale by catalytic decomposition of methane over Fe-Mo/MgO catalyst prepared under Ar-atmosphere. The produced t-MWCNTs had outer diameters in the range of 4-8 nm (average diameter ~6.6 nm) and wall numbers in the range of 4-7 graphenes. The as-synthesized t-MWCNTs showed product yields over 450% relative to the utilized Fe-Mo/MgO catalyst, and indicated a purity of about 85%.

Change of Anti-reflective Optical Property by Nano-structural Control of Alumina Layer through Hydro-thermal Process (수열합성 공정을 통한 알루미나 코팅층의 나노구조 조절에 의한 반사방지 특성의 변화)

  • Lee, Yun-Yi;Son, Dae-Hee;Lee, Seung-Ho;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong-Soo
    • Applied Chemistry for Engineering
    • /
    • v.21 no.5
    • /
    • pp.564-569
    • /
    • 2010
  • Highly anti-reflective optical property has been focussed in the field of thin film and display because of increasing demands to the high transparency and clearness of optical component. In this study, to obtain anti-reflective property, the formation of aluminium oxide with nanoscaled flowerlike frame structure was introduced as oxide material monolayer on the substrate by hydrothermal synthesis through sol-gel method. The properties of coating layer were measured by the means of UV-Vis spectroscopy, FT-IR spectroscopy, XRD, and FE-SEM. The morphology of coating layer in alumina-sol coated samples was controlled by hydrothermal temperature and time with aid of ultrasound. It was found that high transparency and anti-reflective optical properties were obtained the formation of flowerlike nanoframe structure.

Influence of Reaction Factors on Formation of Alumina Sol from Kaolin (카올린으로부터 알루미나 졸의 형성에 미치는 반응인자의 영향)

  • Kang, Hyo-Kyoung;Park, Hong-Chae;Park, Hee-Chan
    • Applied Chemistry for Engineering
    • /
    • v.8 no.4
    • /
    • pp.704-707
    • /
    • 1997
  • The preparation of alumina sol for fine chemical field from kaolin-derived aluminum sulfate solution is performed. Noncrystalline AlO(OH) was prepared by dropping ammonia water into aluminum sufate solution with stirring. Acetetic acid was added to form the electrical double layers on the particle surface of the slurry, which resulted in a stable sol. The influence of the reaction temperature, reaction time, acetetic acid concentration on the preparation of alumina sol were investigated. Dispersed colloid particles of AlO(OH) were prepared at the reaction temperature of $50{\sim}90^{\circ}C$ and 1.6 A/C = 1.6 (molar ratio), regardless of the reaction time. Stable alumina sol having a particle size of about 5~10 nm was prepared in the range 1~5 vol% alumina content.

  • PDF

A Study on Fabrication of La0.5Sr0.5CoO3Thin Films as an Electrode for Ferroelectric Memory by Self-patterning Technique (Self-patterning 기술을 이용한 강유전체 메모리 전극용La0.5Sr0.5CoO3박막의 제조에 관한 연구)

  • 손현수;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2003
  • Self-patterning of thin films using photosensitive sol solution has advantages such as simple manufacturing process compared to photoresist/dry etching process. In this study,$La_{0.5}SR_{0.5}CoO_3$(LSCO) thin films as an electrode material for ferroelectric memories have been prepared by spin coating method using photosensitive sol solution. La-2methoxyethoxide, Sr-ethoxide, Co-2methoxyethoxide were used as starting materials. As UV exposure time to the LSCO gel thin film increased, the UV absorption peak intensity of metal${beta}$-diketonate decreased due to reduced solubility by M(metal)-O-M bond formation. Solubility difference by UV irradiation on LSCO gel thin film allows to obtain a fine patterning of thin film. The LSCO thin films annealed over$680{\circ}C$ in air showed perovskite phase and the lowest resistivity$(4{ imes}10^{-3}{Omega}cm)$ of the thin films were obtained by annealing at$740{\circ}C$.

Structural and Thermal Characteristics of Synthesized SiC by Carbothermal Reaction and Sol-gel Method (Carbothermal 반응법과 졸-겔법에 의해 합성된 SiC의 구조적 특성과 열역학적 특성)

  • Oh, Won-Chun;Kim, Bum-Soo
    • Analytical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.156-160
    • /
    • 1998
  • SiC is synthesized by sol-gel and carbothermal reaction method from various carbon sources and Si source and characterized through the results of DSC and XRD. More SiC has been formed in carbothermal reaction than sol-gel method. From the XRD results, the degree of formation of SiC increases in the order of petroleum cokes, activated carbon, artificial graphite all in two introduced methods. Based on the DSC data, the enthalpy values for the exothermic reaction decrease in the order of activated carbon, petroleum cokes, artificial graphite in carbothermal reaction methods, while those for the endothermic reactions increase in the reverse order. But, the enthalpy values for the exothermic reactions decrease in the order of petroleum cokes, activated carbon, artificial graphite in sol-gel methods.

  • PDF

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods

  • Seyedahmadian, Masoud;Houshyarazar, Shadi;Amirshaghaghi, Ahmad
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.622-628
    • /
    • 2013
  • Nanocrystalline spinel lithium manganese oxide ($LiMn_2O_4$) powders with narrow-size-distribution, pure-phase particles, and high crystallinity with an average crystallite size of about 70 nm were synthesized at $600^{\circ}C$ for 6 h in air by freeze drying method. Spinel $LiMn_2O_4$ is also prepared by sol-gel using citric acid as a chelating agent. The influence of different parameters such as pH conditions, solvent, molar ratio of citric acid to total metal ions, calcination temperature, starting material on the structure, morphology and purity of this oxide was investigated. The results of sol-gel method show that pure $LiMn_2O_4$ with average crystallite size of about 130 nm can be produced from nitrate salts as starting materials at $800^{\circ}C$ for 6 h in air. The optimum pH and molar ratio of chelating agent to total metal ions are $4{\leq}pH{\leq}6$ and 1.0, respectively. A possible mechanism on the formation of the nanocrystallines synthesized by sol-gel was also discussed. At the end a comparison of the differences between two methods was made on the basis of x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) tests.

The Fabrication and Characteristics of FET-Type Electrolyte Sensors by Using Sol-Gel Technique. (Sol-Gel 방법을 이용한 FET형 전해질 센서의 제작 및 특성)

  • Moon, S.Y.;Cho, B.W.;Kim, C.S.;Koh, K.N.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.243-253
    • /
    • 1998
  • PVC membrane, which has been used for membrane of electrolyte sensors, shortened sensor lifetime due to poor adhesion to sensor surface and exhibited difficulty in standardization and mass-production. To overcome these problems, the membrane solution was prepared with neutral carrier, matrix(TEOS:DEDMS=1:3), solvent(ethanol), and a catalyzer(HCl). The fabricated electrolyte sensors showed typical electrical characteristics of MISFET (metal-insulator-semiconductor field-effect transistor). The K-, Ca- and Na-ISFETs showed sensitivity of 53, 25 and 50 mV/decade in wide concentration range, respectively. The response time was about 90 seconds and the drift was 0.05mV/hour. These results suggest that the sol-gel method and the lift-off technique can be applied to formation of membranes and expected to improve mass-productivity, standardzation of the sensors.

  • PDF

Investigation of Low-Temperature Processed Amorphous ZnO TFTs Using a Sol-Gel Method

  • Chae, Seong Won;Yun, Ho Jin;Yang, Seung Dong;Jeong, Jun Kyo;Park, Jung Hyun;Kim, Yu Jeong;Kim, Hyo Jin;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.155-158
    • /
    • 2017
  • In this paper, ZnO Thin Film Transistors (TFTs) were fabricated by a sol-gel method using a low-temperature process, and their physical and electrical characteristics were analyzed. To lower the process temperature to $200^{\circ}C$, we used a zinc nitrate hydrate ($Zn(NO_3)_2{\cdot}xH_2O$) precursor. Thermo Gravimetric Analyzer (TGA) analysis showed that the zinc nitrate hydrate precursor solution had 1.5% residual organics, much less than the 6.5% of zinc acetate dihydrate at $200^{\circ}C$. In the sol-gel method, organic materials in the precursor disrupt formation of a high-quality film, and high-temperature annealing is needed to remove the organic residuals, which implies that, by using zinc nitrate hydrate, ZnO devices can be fabricated at a much lower temperature. Using an X-Ray Diffractometer (XRD) and an X-ray Photoelectron Spectrometer (XPS), $200^{\circ}C$ annealed ZnO film with zinc nitrate hydrate (ZnO (N)) was found to have an amorphous phase and much more oxygen vacancy ($V_o$) than Zn-O bonds. Despite no crystallinity, the ZnO (N) had conductance comparable to that of ZnO with zinc acetate dihydrate (ZnO (A)) annealed at $500^{\circ}C$ as in TFTs. These results show that sol-gel could be made a potent process for low-cost and flexible device applications by optimizing the precursors.

Evaluate the Suitability of MC3T3 Cells to Antibacterial Ag-30CaO·70SiO2 Gel (항균성 Ag-30CaO·70SiO2 Gel의 MC3T3 세포적합성에 관한 연구)

  • Yoon, Geum-Jae;Ryu, Jae-Kyung;An, Eung-Mo;Kim, Yun-Jong;Kim, Taik-Nam;Noh, In-Sup;Cho, Sung-Beck
    • Korean Journal of Materials Research
    • /
    • v.24 no.12
    • /
    • pp.671-676
    • /
    • 2014
  • It is known that bones get damaged by accidents and aging. Since the discovery of Bioglass, various kinds of ceramics have been also found to bond to living bone; some of these ceramics are already being clinically used as bone-repairing materials. In the present study, antibacterial calcium silicate gel ($Ag-30CaO{\cdot}70SiO_2$ gel) was prepared by sol-gel method in order to control the microstructure, which is related to the dissolution rate and induction period of apatite formation in body environment. In addition, biological $Ag-30CaO{\cdot}70SiO_2$ is tested. This was done to impart antimicrobial activity to the $30CaO{\cdot}70SiO_2$. Ag ion was added during sol-gel synthesis to replace the $H_2O$ added during the making of the $30CaO{\cdot}70SiO_2$ gel, which has silver solutions of various concentration. After the sol-gel process, 1N-$HNO_3$ solution was used to wash the gel when synthesizing the gel, in order to maintain the porous structure and remove PEG, water soluble polymers. Then, the apatite forming ability of the sol-gel derived CaO-$SiO_2$ gels was investigated using simulated body fluid (SBF), which had almost the same ion concentration as that of human blood plasma. The gels were analyzed by FT-IR spectroscopy, SEM observation, XRD, and fluorescent microscopy. The apatite was successfully created even after washing the gel; apatite is present in an amorphous state, and was found to affect the concentration of the Ag ion in cells in MC3T3 live & dead assay results. From these results, it is suggested that a good material that can be used to repair defects of nature bone is $Ag-30CaO{\cdot}70SiO_2$ gel.