Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.2.099

Synthesis of thin-multiwalled carbon nanotubes by Fe-Mo/MgO catalyst using sol-gel method  

Dubey, Prashant (Centre of Material Sciences, Institute of Interdisciplinary Studies, University of Allahabad)
Choi, Sang-Kyu (School of Electrical Engineering, Korea University)
Kim, Bawl (School of Electrical Engineering, Korea University)
Lee, Cheol-Jin (School of Electrical Engineering, Korea University)
Publication Information
Carbon letters / v.13, no.2, 2012 , pp. 99-108 More about this Journal
Abstract
The sol-gel technique has been studied to fabricate a homogeneous Fe-Mo/MgO catalyst. Ambient effects (air, Ar, and $H_2$) on thermal decomposition of the citrate precursor have been systematically investigated to fabricate an Fe-Mo/MgO catalyst. Severe agglomeration of metal catalyst was observed under thermal decomposition of citrate precursor in air atmosphere. Ar/$H_2$ atmosphere effectively restricted agglomeration of bimetallic catalyst and formation of highly-dispersed Fe-Mo/MgO catalyst with high specific surface-area due to the formation of Fe-Mo nanoclusters within MgO support. High-quality thin-multiwalled carbon nanotubes (t-MWCNTs) with uniform diameters were achieved on a large scale by catalytic decomposition of methane over Fe-Mo/MgO catalyst prepared under Ar-atmosphere. The produced t-MWCNTs had outer diameters in the range of 4-8 nm (average diameter ~6.6 nm) and wall numbers in the range of 4-7 graphenes. The as-synthesized t-MWCNTs showed product yields over 450% relative to the utilized Fe-Mo/MgO catalyst, and indicated a purity of about 85%.
Keywords
thermal decomposition; citrate precursor; nanoclusters; thin-multiwalled carbon nanotubes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cassell AM, Raymakers JA, Kong J, Dai H. Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B, 103, 6484 (1999). http://dx.doi.org/10.1021/jp990957s.   DOI   ScienceOn
2 Ma W, Kugler EL, Wright J, Dadyburjor DB. Mo−Fe catalysts supported on activated carbon for synthesis of liquid fuels by the Fischer−Tropsch process: effect of Mo addition on reducibility, activity, and hydrocarbon selectivity. Energy Fuels, 20, 2299 (2006). http://dx.doi.org/10.1021/ef0602372.   DOI   ScienceOn
3 Hu M, Murakami Y, Ogura M, Maruyama S, Okubo T. Morphology and chemical state of Co-Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates. J Catal, 225, 230 (2004). http://dx.doi.org/10.1016/j.jcat.2004.04.013.   DOI   ScienceOn
4 Herrera JE, Balzano L, Borgna A, Alvarez WE, Resasco DE. Relationship between the structure/composition of Co-Mo catalysts and their ability to produce single-walled carbon nanotubes by CO disproportionation. J Catal, 204, 129 (2001). http://dx.doi. org/10.1006/jcat.2001.3383.   DOI   ScienceOn
5 Quincy RB, Houalla M, Proctor A, Hercules DM. Distribution of molybdenum oxidation states in reduced molybdenum/titania catalysts: correlation with benzene hydrogenation activity. J Phys Chem, 94, 1520 (1990). http://dx.doi.org/10.1021/j100367a058.   DOI
6 Katrib A, Leflaive P, Hilaire L, Maire G. Molybdenum based catalysts. I. $MoO_{2}$ as the active species in the reforming of hydrocarbons. Catal Lett, 38, 95 (1996). http://dx.doi.org/10.1007/bf00806906.   DOI
7 Solymosi F, Cserenyi J, Szoke A, Bansagi T, Oszko A. Aromatization of methane over supported and unsupported Mo-based catalysts. J Catal, 165, 150 (1997). http://dx.doi.org/10.1006/jcat.1997.1478.   DOI   ScienceOn
8 Muller A, Sarkar S, Shah SQN, Bogge H, Schmidtmann M, Sarkar S, Kogerler P, Hauptfleisch B, Trautwein AX, Schunemann V. Archimedean synthesis and magic numbers: "sizing" giant molybdenum- oxide-based molecular spheres of the Keplerate type. Angew Chem Int Ed, 38, 3238 (1999). http://dx.doi.org/10.1002/(sici)1521-3773(19991102)38:21<3238::aid-anie3238>3.0.co;2-6.   DOI
9 Ward DA, Ko EI. Preparing catalytic materials by the sol-gel method. Ind Eng Chem Res, 34, 421 (1995). http://dx.doi.org/10.1021/ie00041a001.   DOI   ScienceOn
10 Dubey P, Choi SK, Choi JH, Shin DH, Lee CJ. High-quality thinmultiwalled carbon nanotubes synthesized by Fe-Mo/MgO catalyst based on a solgel technique: synthesis, characterization, and field emission. J Nanosci Nanotechnol, 10, 3998 (2010). http:// dx.doi.org/10.1166/jnn.2010.1984   DOI   ScienceOn
11 Zhou ZH, Deng YF, Cao ZX, Zhang RH, Chow YL. Dimeric dioxomolybdenum(VI) and oxomolybdenum(V) complexes with citrate at very low pH and neutral conditions. Inorg Chem, 44, 6912 (2005). http://dx.doi.org/10.1021/ic048330y.   DOI   ScienceOn
12 Wang JA, Novaro O, Bokhimi X, Lopez T, Gomez R, Navarrete J, Llanos ME, Lopez-Salinas E. Structural defects and acidic and basic sites in sol−gel MgO. J Phys Chem B, 101, 7448 (1997). http:// dx.doi.org/10.1021/jp970233l.   DOI   ScienceOn
13 Hu YH, Ruckenstein E. Binary MgO-based solid solution catalysts for methane conversion to syngas. Catal Rev, 44, 423 (2002). http://dx.doi.org/10.1081/cr-120005742.   DOI   ScienceOn
14 Li Y, Zhang X, Tao X, Xu J, Chen F, Huang W, Liu F. Growth mechanism of multi-walled carbon nanotubes with or without bundles by catalytic deposition of methane on Mo/MgO. Chem Phys Lett, 386, 105 (2004). http://dx.doi.org/10.1016/j.cplett.2003.12.128.   DOI   ScienceOn
15 Wang HM, Wang XH, Zhang MH, Du XY, Li W, Tao KY. Synthesis of bulk and supported molybdenum carbide by a single-step thermal carburization method. Chem Mater, 19, 1801 (2007). http://dx.doi.org/10.1021/cm0615471.   DOI   ScienceOn
16 Coquay P, Peigney A, De Grave E, Vandenberghe RE, Laurent C. Carbon nanotubes by a CVD method. Part II: formation of nanotubes from (Mg, Fe)O catalysts. J Phys Chem B, 106, 13199 (2002). http://dx.doi.org/10.1021/jp026632k.   DOI   ScienceOn
17 Hua Z, Bu W, Lian Y, Chen H, Li L, Zhang L, Li C, Shi J. Postgrafting preparation of large-pore mesoporous materials with localized high content titanium doping. J Mater Chem, 15, 661 (2005). http://dx.doi.org/10.1039/B413478H.   DOI   ScienceOn
18 Deshpande K, Mukasyan A, Varma A. Direct synthesis of iron oxide nanopowders by the combustion approach: reaction mechanism and properties. Chem Mater, 16, 4896 (2004). http://dx.doi. org/10.1021/cm040061m.   DOI   ScienceOn
19 Coquay P, De Grave E, Peigney A, Vandenberghe RE, Laurent C. Carbon nanotubes by a CVD method. Part I: synthesis and characterization of the (Mg, Fe)O catalysts. J Phys Chem B, 106, 13186 (2002). http://dx.doi.org/10.1021/jp026631s.   DOI   ScienceOn
20 Flahaut E, Peigney A, Bacsa WS, Bacsa RR, Laurent C. CCVD synthesis of carbon nanotubes from (Mg,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. J Mater Chem, 14, 646 (2004). http://dx.doi.org/10.1039/B312367G.   DOI   ScienceOn
21 Alvarez WE, Kitiyanan B, Borgna A, Resasco DE. Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon, 39, 547 (2001). http:// dx.doi.org/10.1016/s0008-6223(00)00173-1.   DOI   ScienceOn
22 Ning Y, Zhang X, Wang Y, Sun Y, Shen L, Yang X, Van Tendeloo G. Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chem Phys Lett, 366, 555 (2002). http:// dx.doi.org/10.1016/s0009-2614(02)01647-0.   DOI   ScienceOn
23 Shajahan M, Mo YH, Fazle Kibria AKM, Kim MJ, Nahm KS. High growth of SWNTs and MWNTs from $C_{2}H_{2}$ decomposition over Co-Mo/MgO catalysts. Carbon, 42, 2245 (2004). http:// dx.doi.org/10.1016/j.carbon.2004.04.038.   DOI   ScienceOn
24 Jeong HJ, Kim KK, Jeong SY, Park MH, Yang CW, Lee YH. Highyield catalytic synthesis of thin multiwalled carbon nanotubes. J Phys Chem B, 108, 17695 (2004). http://dx.doi.org/10.1021/jp046152o.   DOI   ScienceOn
25 Perez-Mendoza M, Valles C, Maser WK, Martinez MT, Benito AM. Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 16, S224 (2005). http://dx.doi.org/10.1088/0957-4484/16/5/016.   DOI   ScienceOn
26 Jeong HJ, Choi HK, Kim GY, Song YI, Tong Y, Lim SC, Lee YH. Fabrication of efficient field emitters with thin multiwalled carbon nanotubes using spray method. Carbon, 44, 2689 (2006). http:// dx.doi.org/10.1016/j.carbon.2006.04.009.   DOI   ScienceOn
27 Yuan H, Shin DH, Kim B, Lee CJ. Synthesis of well-aligned thin multiwalled carbon nanotubes on the silicon substrate and their field emission properties. Carbon Letters, 12, 218 (2011). http:// dx.doi.org/CL.2011.12.4.218.   DOI   ScienceOn
28 Zhou LP, Ohta K, Kuroda K, Lei N, Matsuishi K, Gao L, Matsumoto T, Nakamura J. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. J Phys Chem B, 109, 4439 (2005). http://dx.doi.org/10.1021/jp045284e.   DOI   ScienceOn
29 Qi H, Qian C, Liu J. Synthesis of high-purity few-walled carbon nanotubes from ethanol/methanol mixture. Chem Mater, 18, 5691 (2006). http://dx.doi.org/10.1021/cm061528r.   DOI   ScienceOn
30 Flahaut E, Peigney A, Laurent C, Rousset A. Synthesis of singlewalled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes. J Mater Chem, 10, 249 (2000). http://dx.doi. org/10.1039/A908593I.   DOI   ScienceOn
31 Li Y, Liu J, Wang Y, Wang ZL. Preparation of monodispersed Fe− Mo nanoparticles as the catalyst for CVD synthesis of carbon nanotubes. Chem Mater, 13, 1008 (2001). http://dx.doi.org/10.1021/cm000787s.   DOI   ScienceOn
32 Hoor FS, Tharamani CN, Ahmed MF, Mayanna SM. Electrochemical synthesis of Fe-Mo and Fe-Mo-Pt alloys and their electrocatalytic activity for methanol oxidation. J Power Sources, 167, 18 (2007). http://dx.doi.org/10.1016/j.jpowsour.2007.01.089.   DOI   ScienceOn
33 Jodin L, Dupuis AC, Rouviere E, Reiss P. Influence of the catalyst type on the growth of carbon nanotubes via methane chemical vapor deposition. J Phys Chem B, 110, 7328 (2006). http://dx.doi. org/10.1021/jp056793z.   DOI   ScienceOn
34 Jeong HD, Lee JH, Lee BG, Jeong HJ, Lee GW, Bang DS, Cho DH, Park YB, Jhee KH. Effect of few-walled carbon nanotube crystallinit on electron field emission property. Carbon Letters, 11, 207, (2011). http://dx.doi.org/CL.2011.12.4.207.
35 Chiang IW, Brinson BE, Huang AY, Willis PA, Bronikowski MJ, Margrave JL, Smalley RE, Hauge RH. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B, 105, 8297 (2001). http://dx.doi.org/10.1021/jp0114891.   DOI   ScienceOn
36 Bacsa WS, Ugarte D, Chatelain A, de Heer WA. High-resolution electron microscopy and inelastic light scattering of purified multishelled carbon nanotubes. Phys Rev B, 50, 15473 (1994). http:// dx.doi.org/10.1103/PhysRevB.50.15473.   DOI   ScienceOn
37 Tohji K, Goto T, Takahashi H, Shinoda Y, Shimizu N, Jeyadevan B, Matsuoka I, Saito Y, Kasuya A, Ohsuna T, Hiraga K, Nishina Y. Purifying single-walled nanotubes. Nature, 383, 679 (1996). http:// dx.doi.org/10.1038/383679a0.   DOI   ScienceOn
38 Muller A, Krickemeyer E, Das SK, Kogerler P, Sarkar S, Bogge H, Schmidtmann M, Sarkar S. Linking icosahedral, strong molecular magnets {Mo} to layers—a solid-state reaction at room temperature. Angew Chem Int Ed, 39, 1612 (2000). http:// dx.doi.org/10.1002/(sici)1521-3773(20000502)39:9<1612::aidanie1612>3.0.co;2-l.   DOI
39 Herrera JE, Resasco DE. Loss of single-walled carbon nanotubes selectivity by disruption of the Co-Mo interaction in the catalyst. J Catal, 221, 354 (2004). http://dx.doi.org/10.1016/j.jcat.2003.08.005.   DOI   ScienceOn
40 Auvray N, Braunstein P, Mathur S, Veith M, Shen H, Hufner S. Thin films by metal organic deposition of Fe-Mo-S molecular clusters: synthesis and crystal structure of [$Cp_{2}MoFe_{2}({\mu}_{3}-S)_{2}(CO)_{6}$]. New J Chem, 27, 155 (2003). http://dx.doi.org/10.1039/B206923G.   DOI   ScienceOn
41 Wang L, Tao L, Xie M, Xu G, Huang J, Xu Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal Lett, 21, 35 (1993). http://dx.doi.org/10.1007/bf00767368.   DOI
42 Solymosi F, Nemeth R, Ovari L, Egri L. Reactions of propane on supported Mo2C catalysts. J Catal, 195, 316 (2000). http://dx.doi. org/10.1006/jcat.2000.3000.   DOI   ScienceOn
43 Shu Y, Ichikawa M. Catalytic dehydrocondensation of methane towards benzene and naphthalene on transition metal supported zeolite catalysts: templating role of zeolite micropores and characterization of active metallic sites. Catal Today, 71, 55 (2001). http:// dx.doi.org/10.1016/s0920-5861(01)00440-0.   DOI   ScienceOn