Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.3.155

Investigation of Low-Temperature Processed Amorphous ZnO TFTs Using a Sol-Gel Method  

Chae, Seong Won (Graduate school of Advanced Circuit Substrate Engineering, Chungnam National University)
Yun, Ho Jin (Department of Electronics Engineering, Chungnam National Univ.)
Yang, Seung Dong (Department of Electronics Engineering, Chungnam National Univ.)
Jeong, Jun Kyo (Department of Electronics Engineering, Chungnam National Univ.)
Park, Jung Hyun (Department of Electronics Engineering, Chungnam National Univ.)
Kim, Yu Jeong (Department of Electronics Engineering, Chungnam National Univ.)
Kim, Hyo Jin (Graduate school of Advanced Circuit Substrate Engineering, Chungnam National University)
Lee, Ga-Won (Graduate school of Advanced Circuit Substrate Engineering, Chungnam National University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.3, 2017 , pp. 155-158 More about this Journal
Abstract
In this paper, ZnO Thin Film Transistors (TFTs) were fabricated by a sol-gel method using a low-temperature process, and their physical and electrical characteristics were analyzed. To lower the process temperature to $200^{\circ}C$, we used a zinc nitrate hydrate ($Zn(NO_3)_2{\cdot}xH_2O$) precursor. Thermo Gravimetric Analyzer (TGA) analysis showed that the zinc nitrate hydrate precursor solution had 1.5% residual organics, much less than the 6.5% of zinc acetate dihydrate at $200^{\circ}C$. In the sol-gel method, organic materials in the precursor disrupt formation of a high-quality film, and high-temperature annealing is needed to remove the organic residuals, which implies that, by using zinc nitrate hydrate, ZnO devices can be fabricated at a much lower temperature. Using an X-Ray Diffractometer (XRD) and an X-ray Photoelectron Spectrometer (XPS), $200^{\circ}C$ annealed ZnO film with zinc nitrate hydrate (ZnO (N)) was found to have an amorphous phase and much more oxygen vacancy ($V_o$) than Zn-O bonds. Despite no crystallinity, the ZnO (N) had conductance comparable to that of ZnO with zinc acetate dihydrate (ZnO (A)) annealed at $500^{\circ}C$ as in TFTs. These results show that sol-gel could be made a potent process for low-cost and flexible device applications by optimizing the precursors.
Keywords
Zinc oxide; Low temperature process; Sol-gel method; Zinc nitrate hydrate; Amorphous TFTs;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Z. R. Khan, M. S. Khan, M. Zulfeguar, and M. S. Khan, Mater. Sci. Appl., 2, 340 (2011). [DOI: http://dx.doi.org/10.4236/msa.2011.25044]
2 N. Shakti, Appl. Phys. Res., 2, 19 (2010). [DOI: http://dx.doi.org/10.5539/apr.v2n1p19]
3 W. H. Jeong, IEEE, Electron Device Lett., 33, 68 (2012). [DOI: http://dx.doi.org/10.1109/LED.2011.2173897]   DOI
4 I. Winer, G. E. Shter, M. M. Lahav, and G. S. Grader, J. Mater. Res., 26, 1309 (2011). [DOI: http://dx.doi.org/10.1557/jmr.2011.69]   DOI
5 W. H. Jeong, ACS appl. Mater. & interfaces, 5, 9051 (2013). [DOI: http://dx.doi.org/10.1021/am4022818]   DOI
6 J. W. Hou, G. Dong, Y. Ye, and V. Chen, J. Membrane Science, 469, 19 (2014). [DOI: http://doi.org/10.1016/j.memsci.2014.06.027]   DOI
7 S. M. Oh, M. G. Kang, Y. H. Do, C. Y. Kang, S. Nahm, and S. J. Yoon, Trans. Electr. Electron. Mater., 12, 222 (2011). [DOI: http://dx.doi.org/10.4313/TEEM.2011.12.5.222]   DOI
8 L. W. Wang, F. Wu, D. X. Tian, W. J. Li, L. Fang, C. Y. Kong, and M. Zhou, J. Alloys & Compounds, 623, 367 (2015). [DOI: http://doi.org/10.1016/j.jallcom.2014.11.055]   DOI
9 S. J. Sung, S. Park, S. Cha, W. J. Lee, C. H. Kim, and M. H. Yoon, RSC Advance, 5, 38125 (2015). [DOI: http://doi.org/10.1039/C5RA04515K   DOI
10 S. Pourhashem, Ceramics International, 40, 993 (2014). [DOI: http://doi.org/10.1016/j.ceramint.2013.06.096]   DOI
11 J. E. Lofgreen, Chem. Soc. Rev., 43, 991 (2014). [DOI: http://doi.org/10.1039/C3CS60276A]
12 M. Rusop, Trans. Electr. Electron. Mater., 13, 102 (2012). [DOI: http://dx.doi.org/10.4313/TEEM.2012.13.2.102]   DOI
13 G. H. Kim, J. Electronchem. Soc., 156, H7 (2009). [DOI: http://dx.doi.org/10.1149/1.2976027]   DOI
14 S. J. Seo, Appl. Phys., 42, 035106-1 (2009). [DOI: http://dx.doi.org/10.1088/0022-3727/42/3/035106]   DOI
15 W. H. Jeong, Appl. Phys. Lett., 96, 093503-1 (2010). [DOI: http://dx.doi.org/10.1063/1.3340943]   DOI
16 E. M. Fortunato, Appl. Phys. Lett., 85, 2541 (2004). [DOI: http://dx.doi.org/10.1063/1.1790587]   DOI