DOI QR코드

DOI QR Code

Synthesis and Characterization of Nanosized of Spinel LiMn2O4 via Sol-gel and Freeze Drying Methods

  • Seyedahmadian, Masoud (Department of Chemistry, Faculty of Science, Shahid Madani University of Azarbaijan) ;
  • Houshyarazar, Shadi (Department of Chemistry, Faculty of Science, Shahid Madani University of Azarbaijan) ;
  • Amirshaghaghi, Ahmad (Department of Chemical Engineering, Ahar Branch-Islamic Azad University)
  • Received : 2012.07.26
  • Accepted : 2012.11.19
  • Published : 2013.02.20

Abstract

Nanocrystalline spinel lithium manganese oxide ($LiMn_2O_4$) powders with narrow-size-distribution, pure-phase particles, and high crystallinity with an average crystallite size of about 70 nm were synthesized at $600^{\circ}C$ for 6 h in air by freeze drying method. Spinel $LiMn_2O_4$ is also prepared by sol-gel using citric acid as a chelating agent. The influence of different parameters such as pH conditions, solvent, molar ratio of citric acid to total metal ions, calcination temperature, starting material on the structure, morphology and purity of this oxide was investigated. The results of sol-gel method show that pure $LiMn_2O_4$ with average crystallite size of about 130 nm can be produced from nitrate salts as starting materials at $800^{\circ}C$ for 6 h in air. The optimum pH and molar ratio of chelating agent to total metal ions are $4{\leq}pH{\leq}6$ and 1.0, respectively. A possible mechanism on the formation of the nanocrystallines synthesized by sol-gel was also discussed. At the end a comparison of the differences between two methods was made on the basis of x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) tests.

Keywords

References

  1. Guyomard, D.; Tarascon, J. Solid State Ionics 1994, 69, 222. https://doi.org/10.1016/0167-2738(94)90412-X
  2. Richard, M. N.; Fuller, E. W.; Dahn, J. R. Solid State Ionics 1994, 73, 81. https://doi.org/10.1016/0167-2738(94)90267-4
  3. Tarascon, J. M.; Mckinnon, W. R.; Coowar, F.; Bowmer, T. N.; Amatucci, G.; Guyomard, D. J. Electrochem. Soc. 1994, 141(6), 1421. https://doi.org/10.1149/1.2054941
  4. Guyomard, D.; Tarascon, J. M. J. Electrochem. Soc. 1992, 139, 937. https://doi.org/10.1149/1.2069372
  5. Hwang, B. J.; Santhanam, R.; Liu, D. G. J. Power Sources 2001, 10l, 86.
  6. Zhu, C.; Yang, C.; Yang, W. D.; Hsieh, C. Y.; Ysai, H. M.; Chen, Y. S. J. Alloy Compd. 2010, 496, 703. https://doi.org/10.1016/j.jallcom.2010.02.178
  7. Liu, X. M.; Huang, Z. D.; Oh, S.; Ma, P. C.; Chan, C. H.; Vedam, G. K.; Kang, K.; Kim, J. K. J. Power Sources 2010, 195, 4290. https://doi.org/10.1016/j.jpowsour.2010.01.068
  8. Yoshio, M.; Nakamura, H.; Xia, Y. Electrochim. Acta 1999, 45, 273. https://doi.org/10.1016/S0013-4686(99)00210-8
  9. Che, G. L.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature 1998, 393, 683.
  10. Chen, H.; Qiu, X.; Zhu, W.; Hagenmuller, P. Electrochem. Comm. 2002, 4, 488. https://doi.org/10.1016/S1388-2481(02)00357-0
  11. Lee, Y. S.; Sun, Y. K.; Ota, S.; Miyashita, T.; Yoshio, M. Electrochem. Comm. 2002, 4, 989. https://doi.org/10.1016/S1388-2481(02)00491-5
  12. Bao, S. J.; Liang, Y. Y.; Li, H. L. Mater. Lett. 2005, 59, 3761. https://doi.org/10.1016/j.matlet.2005.07.012
  13. Wu, M. S.; Chiang, P. C. J.; Lin, Y. S. J. Electrochem. Acta 2004, 49, 1803. https://doi.org/10.1016/j.electacta.2003.12.012
  14. Park, Y. J.; Kim, J. G.; Kim, M. K.; Chung, H. T.; Um, W. S.; Kim, M. H.; Kim, H. G. J. Power Sources 1998, 76, 41. https://doi.org/10.1016/S0378-7753(98)00133-5
  15. Hwang, B. J.; Santhonam, R.; Liu, D. G.; Tsai, Y. W. J. Power Sources 2001, 102, 326. https://doi.org/10.1016/S0378-7753(01)00769-8
  16. Zhu, L. H.; Chen, Z. Y.; Ji, S.; Linkov, V. Solid State Ionics 2008, 179, 1788. https://doi.org/10.1016/j.ssi.2008.01.058
  17. Ashoka, S.; Chithaiah, P.; Tharamani, C. N.; Chandrappa, G. T. J. Exp. Nanosci. 2010, 4, 285.
  18. Levine, I. N. Physical Chemistry; Mc Graw-Hill: New york, 2001.
  19. Zhong, Y. D.; Zhao, Z. B.; Cao, G. S.; Tu, J. P.; Zhu, T. J. J. Alloy Compd. 2006, 420, 298. https://doi.org/10.1016/j.jallcom.2005.10.052
  20. Wanga, X.; Chena, X.; Gaoa, L.; Zhenga, H.; Jib, M.; Shenc, T.; Zhanga, Z. J. Cryst. Growth 2003, 256, 123. https://doi.org/10.1016/S0022-0248(03)01289-2
  21. Park, Y. J.; Kim, J. G.; Kim, M. K.; Chung, H. T.; Kim, H. G. Solid State Ionics 2000, 130, 203. https://doi.org/10.1016/S0167-2738(00)00551-8
  22. Lu, C. H.; Wang, H. C. J. Eur. Ceram Soc. 2003, 23, 865. https://doi.org/10.1016/S0955-2219(02)00209-1
  23. Wu, X. M.; Li, X. H.; Xiao, Z. B.; Liu, J.; Yan, W. B.; Ma, M. Y. Mater. Chem. Phys. 2004, 84, 182. https://doi.org/10.1016/j.matchemphys.2003.11.020
  24. Lu, C. H.; Saha, S. K. Mater. Sci. Eng. 2001, B 79, 247.
  25. Lee, Y. S.; Sun, Y. K.; Nahm, K. S. Solid State Ionics 1998, 109, 285. https://doi.org/10.1016/S0167-2738(98)00085-X
  26. Brylev, O. A.; Shlyakhtin, O. A.; Kulova, T. L.; Skundin, A. M.; Tretjakov, Yu. D. Solid State Ionics 2003, 156, 291. https://doi.org/10.1016/S0167-2738(02)00686-0
  27. Lu, C. H.; SAHA, S. K. J. Sol-gel Sci. Techn 2001, 20, 27. https://doi.org/10.1023/A:1008720515800
  28. Lei, S.; Tang, K.; Fang, Z.; Liu, Q.; Zheng, H. Mater. Lett. 2006, 60, 53. https://doi.org/10.1016/j.matlet.2005.07.070
  29. Saha, S. K.; Pathak, A.; Pramanik, P. J. Mater. Sci. Lett. 1995, 14, 35. https://doi.org/10.1007/BF02565279
  30. Saha, S. K.; Pramanik, P. Brit. Ceram. Trans. 1995, 94, 123.
  31. Saha, S. K.; Pramanik, P. Nanostru. Mater. 1997, 8, 29. https://doi.org/10.1016/S0965-9773(97)00062-7
  32. Saha, S. K.; Pramanik, P. Brit. Ceram. Trans. 1997, 96, 21.
  33. Pistoia, G.; Antonini, A.; Rosati, R.; Zane, D. Electrochem. Acta 1996, 41, 1683.
  34. Ting-Kuo Fey, G.; Cho, Y. D.; Kumar, T. P. Mater. Chem. Phys. 2006, 99, 451. https://doi.org/10.1016/j.matchemphys.2005.11.022
  35. Xian, T.; Yang, H.; Shen, X.; jiang, J. L.; Wei, Z. Q.; Feng, W. J. J. Alloy Compd. 2009, 480, 889. https://doi.org/10.1016/j.jallcom.2009.02.068
  36. Dollimore, D.; O'Connell, C. Thermochimica. Acta 1998, 324, 33. https://doi.org/10.1016/S0040-6031(98)00521-8
  37. Yi, T. F.; Hao, C. L.; Yue, C. B.; Zhu, R. S.; Shu, J. Synthetic. Met. 2009, 159, 1255. https://doi.org/10.1016/j.synthmet.2009.02.026
  38. Lagashetty, A.; Havanoor, V.; Basavaraja, S.; Venkataraman Indian J. Chem. Techn. 2008, 15, 41.

Cited by

  1. A structural investigation of tris(ethyl acetoacetate)aluminium (III) vol.71, pp.2, 2014, https://doi.org/10.1007/s10971-014-3345-1
  2. Lithium vanadium phosphate as cathode material for lithium ion batteries vol.21, pp.5, 2015, https://doi.org/10.1007/s11581-015-1405-3
  3. Electrochemical properties of LiMn2O4 prepared with tartaric acid chelating agent vol.23, pp.7, 2017, https://doi.org/10.1007/s11581-017-1997-x
  4. An investigation into the temperature phase transitions of synthesized materials with Al- and Mg-doped lithium manganese oxide spinels by in situ powder X-ray diffraction vol.32, pp.01, 2017, https://doi.org/10.1017/S088571561600066X
  5. via citrate solution–gel synthesis facilitated by ethanol vol.46, pp.43, 2017, https://doi.org/10.1039/C7DT03100A
  6. A New Method for Producing a Nanosized γ-Al2O3 Powder vol.63, pp.10, 2018, https://doi.org/10.1134/S0036023618100157
  7. The effect of gelatin as a chelating agent on the synthesis and characterization of LiMn2O4 nanopowders prepared via sol–gel method vol.88, pp.2, 2018, https://doi.org/10.1007/s10971-018-4833-5
  8. Modulation of the Optical Properties of Lithium Manganese Oxide via Li-Ion De/Intercalation vol.6, pp.12, 2018, https://doi.org/10.1002/adom.201701362
  9. Fabrication and Characterization of CeO2-NiO/SiC Membranes for Hydrogen Permeation vol.353, pp.None, 2013, https://doi.org/10.4028/www.scientific.net/ddf.353.143
  10. Synthesis of lithium mangan dioxide (LiMn2O4) for lithium-ion battery cathode from various lithium sources vol.985, pp.None, 2013, https://doi.org/10.1088/1742-6596/985/1/012054
  11. LiMn 2 O 4 nanopowders synthesized via gelatin-assisted sol-gel method: Optimization of pH and calcination temperature vol.33, pp.8, 2013, https://doi.org/10.1142/s0217979219500632
  12. Effects of different substrates on nitrogen and phosphorus removal in horizontal subsurface flow constructed wetlands vol.26, pp.16, 2013, https://doi.org/10.1007/s11356-019-04945-1
  13. Precursor Design Strategies for the Low‐Temperature Synthesis of Functional Oxides: It's All in the Chemistry vol.26, pp.42, 2013, https://doi.org/10.1002/chem.201905819
  14. High-Performance Lithium-Ion Hybrid Supercapacitors Based on Lithium Salt/Imidazolium Ionic Liquid Electrolytes and Ni-Doped LiMn2O4 Cathode Materials vol.3, pp.9, 2013, https://doi.org/10.1021/acsaem.0c01435