• Title/Summary/Keyword: Sol coating

Search Result 713, Processing Time 0.021 seconds

Electrosorption Behavior of $TiO_2$/Activated Carbon Composite for Capacitive Deionization (축전식 이온제거에 대한 $TiO_2$/Activated Carbon 화합물의 전기흡착 거동)

  • Lee, Jeong-Won;Kim, Hong-Il;Kim, Han-Joo;Park, Soo-Gil
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.265-271
    • /
    • 2010
  • Desalination effects of capacitive deionization (CDI) process was studied using $TiO_2$/activated carbon electrode. In order to enhance the wettability of electrode and decrease a electrode resistance, $TiO_2$ was coated on activated carbon. By means of $TiO_2$ coating on activated carbon, electric double layer to adsorption content in CDI process was increased. It was identified from TEM, XRD, and XPS that the activated carbon based on $TiO_2$ composite was fabricated successfully by means of sol-gel method. As a results of cyclic voltammetry and impedance, it was identified that $TiO_2$/activated carbon electrode has more electric double later capacitance and less diffusion resistance than activated carbon. Also charge-discharge and ion conductivity profiles showed that the ion removal ratios of $TiO_2$/activated carbon electrode in NaCl electrolyte of $1000\;{\mu}S/cm$ more increased about 39% than that of activated carbon. In conclusion it was possible to identify that the carbon electrode coated $TiO_2$ as electrode material was more effective than raw carbon electrode.

Structural and Electrical Properties of La0.7Sr0.3MnO3 Thin Films for Thermistor Applications (서미스터로의 응용을 위한 La0.7Sr0.3MnO3 박막의 구조적, 전기적 특성)

  • Lim, Jeong-Eun;Park, Byeong-Jun;Yi, Sam-Haeng;Lee, Myung-Gyu;Park, Joo-Seok;Kim, Byung-Cheul;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.499-503
    • /
    • 2022
  • La0.7Sr0.3MnO3 precursor solution were prepared by a sol-gel method. La0.7Sr0.3MnO3 thin films were fabricated by a spin-coating method on a Pt/Ti/SiO2/Si substrate. Structural and electrical properties with the variation of sintering temperature were measured. All specimens exhibited a polycrystalline orthorhombic crystal structure, and the average thickness of the specimens coated 6 times decreased from about 427 nm to 383 nm as the sintering temperature increased from 740℃ to 830℃. Electrical resistance decreased as the sintering temperature increased. In the La0.7Sr0.3MnO3 thin films sintered at 830℃, electrical resistivity, TCR, B-value, and activation energy were 0.0374 mΩ·cm, 0.316%/℃, 296 K and 0.023 eV, respectively.

Fabrication of LiDAR-detectable Plate-type Black Materials and Application in Hydrophilic Paints (라이다 센서에 인지되는 판상형 검은색 소재의 제조 및 친수성 도료로의 응용)

  • Jiwon Kim;Minki Sa;Chan-Gyo Kim;Ha-Yeong Kim;Yeon-Ryong Chu;Suk Jekal;Chang-Min Yoon
    • Journal of Adhesion and Interface
    • /
    • v.24 no.3
    • /
    • pp.95-99
    • /
    • 2023
  • In this study, LiDAR-detectable black materials are synthesized by coating and reduction of titanium dioxide onto plate-type natural mica, which evaluated practical LiDAR verification. In detail, black TiO2@Mica materials are fabricated by utilizing a sol-gel reaction to coat titanium dioxide onto natural mica, followed by reduction using sodium tetrahydridoborate. Subsequently, Black TiO2@Mica materials are dispersed in hydrophilic transparent varnish and sprayed onto the glass substrate to assess applicability as paints. As a result, Black TiO2@Mica-based paints exhibit true blackness (L*=12.1) and a higher NIR reflectance (30.2 R%). In addition, it was confirmed that as-synthesized Black TiO2@Mica materials are successfully recognized by a LiDAR sensor. This phenomenon is attributed to Fresnel's reflection law, in which light reflection occurs at the interface between natural mica and titanium dioxide with different refractive indices. In this regard, the findings of the study are expected to contribute to the potential utilization of LiDAR-detectable materials in various fields such as autonomous vehicles, robotics, and drones.