DOI QR코드

DOI QR Code

An Experimental Study of Synthesis and Characterization of Vanadium Oxide Thin Films Coated on Metallic Bipolar Plates for Cold-Start Enhancement of Fuel Cell Vehicles

연료전지 차량의 냉시동성 개선을 위한 금속 분리판 표면의 바나듐 산화물 박막 제조 및 특성 분석에 관한 연구

  • Jung, Hye-Mi (School of Mechanical Engineering, Hanyang Univ.) ;
  • Noh, Jung-Hun (School of Mechanical Engineering, Hanyang Univ.) ;
  • Im, Se-Joon (Research & Development Division, Hyundai-Kia Motors) ;
  • Lee, Jong-Hyun (Research & Development Division, Hyundai-Kia Motors) ;
  • Ahn, Byung-Ki (Research & Development Division, Hyundai-Kia Motors) ;
  • Um, Suk-Kee (School of Mechanical Engineering, Hanyang Univ.)
  • 정혜미 (한양대학교 기계공학부) ;
  • 노정훈 (한양대학교 기계공학부) ;
  • 임세준 (현대자동차 환경기술연구소) ;
  • 이종현 (현대자동차 환경기술연구소) ;
  • 안병기 (현대자동차 환경기술연구소) ;
  • 엄석기 (한양대학교 기계공학부)
  • Received : 2010.12.13
  • Accepted : 2011.03.09
  • Published : 2011.06.01

Abstract

The enhancement of the cold-start capability of polymer electrolyte fuel cells is of great importance in terms of the durability and reliability of fuel-cell vehicles. In this study, vanadium oxide films deposited onto the flat surface of metallic bipolar plates were synthesized to investigate the feasibility of their use as an efficient self-heating source to expedite the temperature rise during startup at subzero temperatures. Samples were prepared through the dip-coating technique using the hydrolytic sol-gel route, and the chemical compositions and microstructures of the films were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and field-emission scanning electron microscopy. In addition, the electrical resistance hysteresis loop of the films was measured over a temperature range from -20 to $80^{\circ}C$ using a four-terminal technique. Experimentally, it was found that the thermal energy (Joule heating) resulting from self-heating of the films was sufficient to provide the substantial amount of energy required for thawing at subzero temperatures.

냉시동 성능 개선은 연료전지 차량의 고분자 전해질 연료전지 발전 모듈 및 시스템의 내구성과 신뢰성 향상의 측면에서 매우 중요하다. 이에 본 연구에서는 영하의 기후에서 연료전지 차량의 초기 구동 시금속 분리판 표면에 형성된 바나듐 산화물 박막의 자기 발열 특성을 이용하여 신속한 온도 상승 구현이 가능한 냉시동 향상 기술을 제안하고, 실험적 방법을 통해 그 적용 가능성을 검증하였다. 졸-겔 침지 법에 의해 제조된 바나듐 산화물 박막의 특성 평가를 위해 X 선 회절, 광전자 분광, 전자 주사 현미경을 이용한 화합물 조성 및 미세구조 분석, 4-탐침법을 이용한 $-20{\sim}80^{\circ}C$의 온도 구간에서의 온도-저항 이력 특성 분석을 각각 수행하였다. 본 실험 결과, 냉시동 조건에서 박막의 자기 발열량은 연료전지 내부의 생성 수 결빙 방지에 필요한 열 에너지를 모두 충족시킬 수 있음을 확인하였다.

Keywords

References

  1. Springer, T. E., Zawodzinski, T. A. and Gottesfeld, S., 1991, "Polymer Electrolyte Fuel Cell Model," J. Electrochem. Soc., Vol. 138, No. 8, pp. 2334-2342. https://doi.org/10.1149/1.2085971
  2. Zawodzinski, T. A., Davey, J., Valerio, J. and Gottesfeld, S., 1995, "The Water Content Dependence of Electro-Osmotic Drag in Proton-Conducting Polymer Electrolytes," Electrochim. Acta, Vol. 40, No. 3, pp. 297-302. https://doi.org/10.1016/0013-4686(94)00277-8
  3. Kazuya, T., Yuichiro, T., Fumio, K., Shinichi, T., Koudai, Y. and Chao-Yang, W., 2007, "Effects of Operating and Design Parameters on PEFC Cold Start," J. Power Sources, Vol. 165, No. 1, pp. 279-286. https://doi.org/10.1016/j.jpowsour.2006.12.017
  4. Ishikawa, Y., Hamada, H., Uehara, M. and Shiozawa, M., 2008, "Super-Cooled Water Behavior Inside Polymer Electrolyte Fuel Cell Cross-Section Below Freezing Temperature," J. Power Sources, Vol. 179, No. 2, pp. 547-552. https://doi.org/10.1016/j.jpowsour.2008.01.031
  5. Sundaresan, M. and Moore, R. M., 2005, "Polymer Electrolyte Fuel Cell Stack Thermal Model to Evaluate Sub-Freezing Startup," J. Power Sources, Vol. 145, No. 2, pp. 534-545. https://doi.org/10.1016/j.jpowsour.2004.12.070
  6. Ahmad, A. P., Gi-Heon, K. and Jeffrey, D. G.,, 2005, PEM Fuel Cell Freeze and Rapid Startup Investigation, Milestone Report NREL/MP-540-38760, pp. 25-27.
  7. Katzke, H., Toledano, P. and Depmeier, W., 2003, "Theory of Morphotropic Transformations in Vanadium Oxides," Phys. Rev. B, Vol. 68, No. 2, pp. 241091-241097.
  8. Mott N. F., 1990, Metal-Insulator Transitions, Taylor & Francis, pp. 171-188.
  9. Volker E., 2002, "The Metal-Insulator Transition of $VO_2$: A Band Theoretical Approach," Annalen der Physik, Vol. 11, No. 9, pp. 650-704. https://doi.org/10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K
  10. Geert, S., Diederik, D., Hilde, P., Guy, B. M. and Roger, D. G., 2004, "Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States ($V^{5+}\;to\;V^{0+}$)," J. Electron Spectrosc. Relat. Phenom., Vol. 135, No. 2-3, pp. 167-175. https://doi.org/10.1016/j.elspec.2004.03.004