• Title/Summary/Keyword: Soil-drenching

Search Result 61, Processing Time 0.027 seconds

Effect of Chemical Treatment on the Control of Strawberry Anthracnose caused by Colletotrichum sp. (딸기탄저병의 약제방제효과)

  • 김승한;최성용;임양숙;윤재탁;최부술
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.50-54
    • /
    • 2002
  • A total of 55 Colletotrichum isolates from strawberry plants with anthracnose symptoms(crown rot) were inhibited in mycelial growth on potato-dextrose agar(PDA) amended with fungicides in variable degrees depending on the chemicals used, especially showing no growth on PDA with 1 mg/m/tricyclazole. However, in the detached leaf test by treating chemicals before or after inoculation of Colletotrichum sp., tricyclazole was little effective in controlling symptom development; instead azoxystrobin, which had low in vitro inhibition of mycelial growth, inhibited strongly the symptom development. Some chemicals were tested for the control of strawberry crown rot in greenhouse using three methods, sprays soil drenching and plant dipping. No or little control effect were made by chemical spray and soil drenching, but plant dipping in chemical solution, especially azoxystrobin: reduced crown rot development by about 50% in the greenhouse suggesting that the azoxystrobin treatment may be an effective control method of the crown rot of strawberry. No differences in the control efficacy were noted according to the dipping time and chemical concentration of azoxystrobin not less than 10 min and 250 mg/m/, respectively.

Convenient Screening Method of Chinese Cabbage for Resistance to Plasmodiophora brassicae Using Soil-Drenching Inoculation (관주 접종법을 이용한 효율적인 배추 뿌리혹병 저항성 검정법)

  • Jo, Su-Jung;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.279-284
    • /
    • 2010
  • Clubroot caused by Plasmodiophora brassicae is a widespread disease that causes serious problems in many brassica growing areas. To establish more simple and reliable clubroot screening method of Chinese cabbage to P. brassicae using soil-drenching inoculation, the development of clubroot on Chinese cabbage according to several conditions such as soil type, inoculum concentration of P. brassicae GN-1 (race 9), plant growth stage and incubation period was studied. In a commercial horticulture nursery media soil (CNS), disease severity of the seedling according to inoculum concentration increased in a dose-dependent manner, but did not in mixture of CNS and upland soil (1:1, v/v). To facilitate and acquire precise result of resistance screening of Chinese cabbage to clubroot, 10-day-old seedlings should be inoculated by drenching the spore suspension of P. brassicae to give inoculum density of $4.0{\times}10^8$ spores/pot. To develop the disease, the inoculated seedlings were incubated in a growth chamber at $20^{\circ}C$ for 3 days, and then cultivated in a greenhouse ($25{\pm}5^{\circ}C$) for five weeks. Under the optimum conditions, 25 clubroot-resistant (CR) and 3 clubroot-susceptible (CS) cultivars were tested for resistance to P. brassicae. All CR cultivars showed very clear resistance response, on the other hand all CS cultivars severly infected with the pathogen. The results suggest that this method is efficient screening method of Chinese cabbage for resistance to clubroot disease.

Biocontrol of Ginseng Damping-off by Bacillus velezensis CC112 (Bacillus velezensis CC112 균주의 인삼 잘록병에 대한 생물적 방제)

  • Lee, Sang Yeob;Song, Jaekyeong;Park, Kyeong Hun;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.176-183
    • /
    • 2016
  • Bacillus velezensis CC112 inhibited the mycelial growth of several plant pathogens, including Rhizoctonia solani, causing damping-off on ginseng. The control efficacies of B. velezensis CC112 against R. solani by seed dipping in LB and BSM broth diluted 10 times, soil dipping, and soil drenching with LB broth diluted 10 times were 65.8%, 67.1%, and 64.2%, respectively. Treatment of soil drenching with the 100 times diluted prototype of B. velezensis CC112 against R. solani and Pythium sp. by soil revealed control efficacies of 77.3% and 65.7%, respectively. These results indicate that B. velezensis CC112 is a prospective biofungicide for the biological control of ginseng damping off.

Damping-off Disease in Mulberry Seedlings and Its Management

  • Naik, V.Nishitha;Sharma, D.D.;Chowdary, N.B.;Mala, V.R.
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.8 no.2
    • /
    • pp.201-205
    • /
    • 2004
  • During the routine survey, the mortality of mulberry seedlings was noticed due to damping-off disease. The disease recognized by rotting of emerged seedlings near the soil line (just below the soil level) resulting in collapse of the seedlings. Two fungi were isolated from affected samples and identified as Alternaria alternata (Fr.) Keissler and Fusarium solani (Mart.) Sacc. Both the fungi were found to be responsible in causing pre and post emergence damping-off of seedlings in mulberry. For management of the disease, an experiment was conducted using fungicides. These fungicides were applied as seed treatment; soil drenching and foliar spray alone and in combination. Among the different treatments, integration of seed treatment and soil application of Dithane M-45 (Mancozeb 75% WP) + Bavistin (Carbendazim 50% WP) followed by foliar spray of these fungicides (after 35 days of sowing) resulted in better survivability of seedlings (93.3 %) on $90^th$ day and controlled the pre and post emergence damping off by 100 and 89.5%, respectively over the check.

Effect of Tolclofos-methyl on damping-off of ginseng seedlings incited by Rhisoctonia solani (인삼 모잘록병 (Rhizoctonia soEani)에 대한 Tolclofos-methyl의 효과)

  • Yu, Yeon-Hyeon;Jo, Dae-Hui;O, Seung-Hwan
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.114-118
    • /
    • 1989
  • Tolclofos-methyl applied as seed dipping at 1,000 ppm for 3 hrs before sowing and soil drenching at the rate of 300 g ai./10 a in the middle of April protected emerging seedlings of Panax ginseng from damping-off caused by Rhiiutonia solani(AG2-1) in Yangjik Soil artificially infested with the pathogen. Germination rates with tolclofos-methyl, pencycuron, and control were 53.7%, 45.8%, and 7.5%, respectively, while the rate of the seeds at non-infested soil was 62.6%. The effectiveness of Tolclofos-methyl against the pathogen in the soil lasted upto 32 days in vitro. However, the transpiratio of ginseng seedlings increased greatly with chemical treatment, showing 0.02, 0.12, and 0.24 m1/cm2 leaf area/day at 0, 1,2, and 4 ppm a.i. of the fungicide, respectively.

  • PDF

Biological control of Paraconiothyrium minitans CM2 on Lettuce Sclerotinia Rot Caused by Sclerotinia sclerotiorum (Paraconiothyrium minitans CM2의 상추 균핵병균(Sclerotinia sclerotiorum)에 대한 생물적 방제)

  • Lee, Sang Yeob;Hong, Sung Kee;Kim, Jeong Jun;Han, Ji Hee;Kim, Wan Gyu
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.271-276
    • /
    • 2012
  • A mycoparasite, Paraconiothyrium minitans CM2 was selected for biological control of sclerotinia rot of lettuce caused by Sclerotinia sclerotiorum. The experiment was carried out in a lettuce greenhouse in Yangpyeong from March to April.. When lettuce sclerotinia rot showed in the early stage of occurrence, Conidial suspension of the mycoparasite was weekly treated once to three times onto soil surface around lettuce plants. Incidence of sclerotinia rot in the once-application plot of the mycoparasite ($1{\times}10^7$ spores/$m{\ell}$) and in the benomyl(WP)-treated plot was 11.0% and 2.7%, respectively, whereas that of control was 31.0%. Incidence of twice- and three-application plots of the isolate was 7.9% and 12.8%, respectively. For increasing the effect of the mycoparasite, the experiment for the timing of application of P. minitans CM2 was carried out in a lettuce greenhouse in Yangpyeong and Suwon. Control efficacy against lettuce sclerotinia rot in the soil-drenching plots of P. minitans CM2 ($5{\times}10^6$ spores/$m{\ell}$) in the planting was 75.3~84.7%, and control effect by treatment of the isolate at the pot drenching+the soil-drenching plots in the early stage of disease occurrence was 63.8~58.0%. As the results, P. minitans CM2 could be a prospective biofungicide for biological control of sclerotinia rot of lettuce.

Chemical Control of Rhizome Rot of Ginger by Seed-Rhizome and Soil Treetment (생강 근경부패병의 약제방제)

  • Choi, Jae Eul
    • Korean Journal of Agricultural Science
    • /
    • v.26 no.1
    • /
    • pp.1-5
    • /
    • 1999
  • This experiment was carried out to define the development of control method against rhizome rot of ginger. It was difficult to control of rhizome rot of ginger completely by way of only rhizome sterlization. When soil were stenilized with dazomet, and metalacxyl granule was applied, higher than 95% of control value as well as 39% of yield increase compared to control were found. Soil drenching with metalacxyl cupper oxychloride and streptomycin controlled the rhizome rot satisfactorily, but was inferior to the above mentioned combination.

  • PDF

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu;Jang, Su Jeong;Lee, Young Hee;Jo, Yeon Sook;Yun, Jae Gill;Jo, Hyesu;Park, Chang-Jin;Kim, Hyo Joong
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.78-84
    • /
    • 2018
  • Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

Control of Ginseng Damping-off by Streptomyces sp. A75 and A501 (Streptomyces sp. A75와 A501 균주의 인삼 잘록병에 대한 방제효과)

  • Lee, Sang Yeob;Song, Jaekyeong;Yun, Bong-Sik;Park, Kyeong hun;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.4
    • /
    • pp.330-337
    • /
    • 2016
  • Streptomyces sp. A75 and A501 inhibited the mycelial growth of pathogenic Rhizoctonia solani and Pythium sp., which cause the ginseng disease known as damping-off. Three methods were evaluated for the control of these pathogens, using a mixture of the culture broths from Streptomyces sp. A75 and A501. The methods tested were seed dipping with 50-fold diluted broth, drenching of soil with 100-fold diluted broth after sowing, and combined seed dipping and drenching. These methods reduced the incidence of ginseng damping-off caused by R. solani by 81.3%, 84.8%, and 32.2% and that caused by Pythium sp. by 51.0%, 52.1%, and 75.3%, respectively. Based on these results, the combination of seed dipping and soil drenching after sowing using a mixture of the culture broths from Streptomyces sp. A75 and A501 effectively reduced the incidence of damping-off in ginseng.

Effect of Metalaxyl on Controlling Phytophthoyra Disease of Korea Ginseng (인삼역병에 대한 Metalalryl의 방제효과)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.163-169
    • /
    • 1985
  • The efficacy of fungicides was compared for control of root rot as well as leaf blight caused by Phytophthora cactorum on ginseng plants. Growth of P. cactorum in rlitro was completely or highly inhibited by metalaxyl, tetracyclin, captafol, carbendazim, and thiophanate + thiram. In field trials, the disease was significantly reduced not only in the root rot but also in the leaf blight when metalaxyl was applied at 4.17 mg a.i. per plant for soil drenching and 1.25 mg a.i. for foliage application. Also captafol was effective on control of the leaf blight but its effect was inferior to that of metalaxyl. Metalaxyl lost its effectiveness in vivo between the 5th and 7th week after soil wren ching. Phytotoxicity was, however, observed on 2 years old ginseng plants when metalaxyl was drenched at 8 mg a.i. while no phytotoxic symptom was developed on 2 years old ginseng plants at 4k mg a.i. and 3 years old at 16 mg a.i. per plant, respectively.

  • PDF