DOI QR코드

DOI QR Code

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Jang, Su Jeong (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Jo, Yeon Sook (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Yun, Jae Gill (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech)) ;
  • Jo, Hyesu (Department of Bioresources Engineering and PERI, Sejong University) ;
  • Park, Chang-Jin (Department of Bioresources Engineering and PERI, Sejong University) ;
  • Kim, Hyo Joong (Institute of Technology, Daesung C&S Co., Ltd.)
  • Received : 2017.06.29
  • Accepted : 2017.10.27
  • Published : 2018.02.01

Abstract

Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

Keywords

References

  1. Chang, A. S. and Schneider, K. R. 2012. Evaluation of overhead spray-applied sanitizers for the reduction of Salmonella on tomato surfaces. J. Food Sci. 71:M65-M69.
  2. Gurtler, J. B., Bailey, R. B., Jin, T. Z. and Fan, X. 2014. Reduction of an E. coli O157:H7 and Salmonella composite on fresh strawberries by varying antimicrobial washes and vacuum perfusion. Int. J. Food Microbiol. 189:113-118. https://doi.org/10.1016/j.ijfoodmicro.2014.08.005
  3. Hong, J. C., Momol, M. T., Ji, P., Olson, S. M., Colee, J. and Jones, J. B. 2011. Management of bacterial wilt in tomatoes with thymol and acibenzolar-S-methyl. Crop Protect. 30:1340-1345. https://doi.org/10.1016/j.cropro.2011.05.019
  4. Hong, J. K., Kang, S. R., Kim, Y. H., Yoon, D. J., Kim, D. H., Kim, H. J., Sung, C. H., Kang, H. S., Choi, C. W., Kim, S. H. and Kim, Y. S. 2013. Hydrogen peroxide- and nitric oxide-mediated disease control of bacterial wilt in tomato plants. Plant Pathol. J. 29:386-396. https://doi.org/10.5423/PPJ.OA.04.2013.0043
  5. Hong, J. K., Kim, H. J., Jung, H., Yang, H. J., Kim, D. H., Sung, C. H., Park, C.-J. and Chang, S. W. 2016. Differential control efficacies of vitamin treatments against bacterial wilt and grey mould diseases in tomato plants. Plant Pathol. J. 32:469-480. https://doi.org/10.5423/PPJ.OA.03.2016.0076
  6. Jagdale, G. B. and Grewal, P. S. 2002. Identification of alternatives for the management of foliar nematodes in floriculture. Pest Manag. Sci. 58:451-458. https://doi.org/10.1002/ps.472
  7. Jogaiah, S., Abdelrahman, M., Tran, L.-S. P. and Shin-ichi, I. 2013. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt. J. Exp. Bot. 64:3829-3842. https://doi.org/10.1093/jxb/ert212
  8. Jose, J. F. B. S. and Vanetti, M. C. D. 2012. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Cont. 24:95-99. https://doi.org/10.1016/j.foodcont.2011.09.008
  9. Jung, E. J., Joo, H. J., Choi, S. Y., Lee, S. Y., Jung, Y. H., Lee, M. H., Kong, H. G. and Lee, S.-W. 2014. Resistance evaluation of tomato germplasm against bacterial wilt by Ralstonia solanacearum. Res. Plant Dis. 20:253-258 (in Korean). https://doi.org/10.5423/RPD.2014.20.4.253
  10. Kim, S. G., Hur, O.-S., Ro, N.-Y., Ko, H.-C., Rhee, J.-H., Sung, J. S., Ryu, K.-Y., Lee, S.-Y. and Baek, H. J. 2016. Evaluation of resistance to Ralstonia solanacearum in tomato genetic resources at seedlings stage. Plant Pathol. J. 32:58-64. https://doi.org/10.5423/PPJ.NT.06.2015.0121
  11. Lee, H. J., Jo, E. J., Kim, N. H., Chae, Y. and Lee, S.-W. 2011. Disease responses of tomato pure lines against Ralstonia solanacearum strains from Korea and susceptibility at high temperature. Res. Plant Dis. 17:326-333 (in Korean). https://doi.org/10.5423/RPD.2011.17.3.326
  12. Lee, J. H., Jang, K. S., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2015. Development of an efficient screening system for resistance of tomato cultivars to Ralstonia solanacearum. Res. Plant Dis. 21:290-296 (in Korean). https://doi.org/10.5423/RPD.2015.21.4.290
  13. Lee, Y. H., Choi, C. W., Kim, S. H., Yun, J. G., Chang, S. W., Kim, Y. S. and Hong, J. K. 2012. Chemical pesticides and plant essential oils for disease control of tomato bacterial wilt. Plant Pathol. J. 28:32-39. https://doi.org/10.5423/PPJ.OA.10.2011.0200
  14. Mew, T. W. and Ho, W. C. 1977. Effect of soil temperature on resistance tomato cultivars to bacterial wilt. Phytopathology 67:909-911.
  15. Narciso, J. A., Baldwin, E. A., Plotto, A. and Ference, C. M. 2007. Preharvest peroxyacetic acid sprays slow decay and extend shelf life of strawberries. HortScience 42:617-621.
  16. Shin, J.-W. and Yun, S.-C. 2010. Elevated $CO_2$ and temperature effects on the incidence of four major chili pepper diseases. Plant Pathol. J. 26:178-184. https://doi.org/10.5423/PPJ.2010.26.2.178
  17. Tan, S., Dong, Y., Liao, H., Huang, J., Song, S., Xu, Y. and Shen, Q. 2013. Antagonistic bacterium Bacillus amyloliquefaciens induces resistance and controls the bacterial wilt of tomato. Pest Manag. Sci. 69:1245-1252.
  18. Vines, J. R. L., Jenkins, P. D., Foyer, C. H., French, M. S. and Scott, I. M. 2003. Physiological effects of peracetic acid on hydroponic tomato plants. Ann. Appl. Biol. 143:153-159. https://doi.org/10.1111/j.1744-7348.2003.tb00281.x
  19. Wisniewsky, M. A., Glatz, B. A., Gleason, M. L. and Reitmeier, C. A. 2000. Reduction of Escherichia coli O157:H7 counts on whole fresh apples by treatment with sanitizers. J. Food Prot. 63:703-708. https://doi.org/10.4315/0362-028X-63.6.703
  20. Wu, K., Yuan, S., Xun, G., Shi, W., Pan, B., Guan, H., Shen, B. and Shen, Q. 2015. Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index. Eur. J. Plant Pathol. 141:667-677. https://doi.org/10.1007/s10658-014-0569-4
  21. Yao, J. and Allen, C. 2006. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J. Bacteriol. 188:3697-3708. https://doi.org/10.1128/JB.188.10.3697-3708.2006