• Title/Summary/Keyword: Soil microbiology

Search Result 1,367, Processing Time 0.026 seconds

Dynamics of Functional Genes and Bacterial Community during Bioremediation of Diesel-Contaminated Soil Amended with Compost

  • Hyoju Yang;Jiho Lee;Kyung-Suk Cho
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.471-484
    • /
    • 2023
  • Compost is widely used as an organic additive to improve the bioremediation of diesel-contaminated soil. In this study, the effects of compost amendment on the remediation performance, functional genes, and bacterial community are evaluated during the bioremediation of diesel-contaminated soils with various ratios of compost (0-20%, w/w). The study reveals that the diesel removal efficiency, soil enzyme (dehydrogenase and urease) activity, soil CH4 oxidation potential, and soil N2O reduction potential have a positive correlation with the compost amendment (p < 0.05). The ratios of denitrifying genes (nosZI, cnorB and qnorB) to 16S rRNA genes each show a positive correlation with compost amendment, whereas the ratio of the CH4-oxidizing gene (pmoA) to the 16S rRNA genes shows a negative correlation. Interestingly, the genera Acidibacter, Blastochloris, Erythrobacter, Hyphomicrobium, Marinobacter, Parvibaculum, Pseudoxanthomonas, and Terrimonas are strongly associated with diesel degradation, and have a strong positive correlation with soil CH4 oxidation potential. Meanwhile, the genera Atopostipes, Bacillus, Halomonas, Oblitimonas, Pusillimonas, Truepera, and Wenahouziangella are found to be strongly associated with soil N2O reduction potential. These results provide useful data for developing technologies that improve diesel removal efficiency while minimizing greenhouse gas emissions in the bioremediation process of diesel-contaminated soil.

Influence of Companion Planting on Microbial Compositions and Their Symbiotic Network in Pepper Continuous Cropping Soil

  • Jingxia Gao;Fengbao Zhang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.6
    • /
    • pp.760-770
    • /
    • 2023
  • Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.

Evaluation of ${\beta}$-1,4-Endoglucanases Produced by Bacilli Isolated from Paper and Pulp Mill Effluents Irrigated Soil

  • Pandey, Sangeeta;Tiwari, Rameshwar;Singh, Surender;Nain, Lata;Saxena, Anil Kumar
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1073-1080
    • /
    • 2014
  • A total of 10 cellulase-producing bacteria were isolated from soil samples irrigated with paper and pulp mill effluents. The sequencing of 16S rRNA gene revealed that all isolates belonged to different species of genus Bacillus. Among the different isolates, B. subtilis IARI-SP-1 exhibited a high degree of ${\beta}$-1,4-endoglucanase (2.5 IU/ml), ${\beta}$-1,4-exoglucanase (0.8 IU/ml), and ${\beta}$-glucosidase (0.084 IU/ml) activity, followed by B. amyloliquefaciens IARI-SP-2. CMC was found to be the best carbon source for production of endo/exoglucanase and ${\beta}$-glucosidase. The ${\beta}$-1,4-endoglucanase gene was amplified from all isolates and their deduced amino acid sequences belonged to glycosyl hydrolase family 5. Among the domains of different isolates, the catalytic domains exhibited the highest homology of 93.7%, whereas the regions of signal, leader, linker, and carbohydrate-binding domain indicated low homology (73-74%). These variations in sequence homology are significant and could contribute to the structure and function of the enzyme.

Effects of Long-Term Fertilizer Practices on Rhizosphere Soil Autotrophic CO2-Fixing Bacteria under Double Rice Ecosystem in Southern China

  • Tang, Haiming;Wen, Li;Shi, Lihong;Li, Chao;Cheng, Kaikai;Li, Weiyan;Xiao, Xiaoping
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.10
    • /
    • pp.1292-1298
    • /
    • 2022
  • Soil autotrophic bacterial communities play a significant role in the soil carbon (C) cycle in paddy fields, but little is known about how rhizosphere soil microorganisms respond to different long-term (35 years) fertilization practices under double rice cropping ecosystems in southern China. Here, we investigated the variation characteristics of rhizosphere soil RubisCO gene cbbL in the double rice ecosystems of in southern China where such fertilization practices are used. For this experiment we set up the following fertilizer regime: without any fertilizer input as a control (CK), inorganic fertilizer (MF), straw returning (RF), and organic and inorganic fertilizer (OM). We found that abundances of cbbL, 16S rRNA genes and RubisCO activity in rhizosphere soil with OM, RF and MF treatments were significantly higher than that of CK treatment. The abundances of cbbL and 16S rRNA genes in rhizosphere soil with OM treatment were 5.46 and 3.64 times higher than that of CK treatment, respectively. Rhizosphere soil RubisCO activity with OM and RF treatments increased by 50.56 and 45.22%, compared to CK treatment. Shannon and Chao1 indices for rhizosphere soil cbbL libraries with RF and OM treatments increased by 44.28, 28.56, 29.60, and 23.13% compared to CK treatment. Rhizosphere soil cbbL sequences with MF, RF and OM treatments mainly belonged to Variovorax paradoxus, uncultured proteobacterium, Ralstonia pickettii, Thermononospora curvata, and Azoarcus sp.KH33C. Meanwhile, cbbL-carrying bacterial composition was obviously influenced by soil bulk density, rhizosphere soil dissolved organic C, soil organic C, and microbial biomass C contents. Fertilizer practices were the principal factor influencing rhizosphere soil cbbL-carrying bacterial communities. These results showed that rhizosphere soil autotrophic bacterial communities were significantly changed under conditions of different long-term fertilization practices Therefore, increasing rhizosphere soil autotrophic bacteria community with crop residue and organic manure practices was found to be beneficial for management of double rice ecosystems in southern China.

Releasing a Genetically Engineered Microorganism for Bioremediation

  • Sayler, Gary;Burlage, Robert;Cox, Chris;Nivens, David;Ripp, Steven;Ahn, Yeonghee;Easter, Jim;Wrner, Claudia;Jarrell, John
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.153-162
    • /
    • 2000
  • A field study was performed to test effectiveness of a bloluminescent genetically engineered microorganism (GEM) for bioremediation process monitoring and control. The study employed Pseudomonas fluorescens HK44 that was the first strain approved for field application in the U.S. for bioremediation purposes. HK44 contains lux gene fused within a naphthalene degradative pathway, allowing this GEM to bioluminesce as it degrades naphthalene as well as substituted naphthalenes and other polycyclic aromatic hydrocarbons (PAHs) , Results showed that HK44 was maintained in both PAH-contarninated and uncontaminated soils even 660 days after inoculation. HK44 was able to produce bioluminescence in response to PAHs in soil. Although effectiveness of chemical remediation was not assessed due to heterogeneous distribution of contaminants, decreased concentration of naphthalene was shown in the soils, Taken together, HK44 was useful for in situ bioremediation process monitoring and control. This work is so far the only field release of a GEM for bioremediation purposes.

  • PDF

Paromomycin Derived from Streptomyces sp. AG-P 1441 Induces Resistance against Two Major Pathogens of Chili Pepper

  • Balaraju, Kotnala;Kim, Chang-Jin;Park, Dong-Jin;Nam, Ki-Woong;Zhang, Kecheng;Sang, Mee Kyung;Park, Kyungseok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1542-1550
    • /
    • 2016
  • This is the first report that paromomycin, an antibiotic derived from Streptomyces sp. AG-P 1441 (AG-P 1441), controlled Phytophthora blight and soft rot diseases caused by Phytophthora capsici and Pectobacterium carotovorum, respectively, in chili pepper (Capsicum annum L.). Chili pepper plants treated with paromomycin by foliar spray or soil drenching 7 days prior to inoculation with P. capsici zoospores showed significant (p < 0.05) reduction in disease severity (%) when compared with untreated control plants. The disease severity of Phytophthora blight was recorded as 8% and 50% for foliar spray and soil drench, respectively, at 1.0 ppm of paromomycin, compared with untreated control, where disease severity was 83% and 100% by foliar spray and soil drench, respectively. A greater reduction of soft rot lesion areas per leaf disk was observed in treated plants using paromomycin (1.0 μg/ml) by infiltration or soil drench in comparison with untreated control plants. Paromomycin treatment did not negatively affect the growth of chili pepper. Furthermore, the treatment slightly promoted growth; this growth was supported by increased chlorophyll content in paromomycin-treated chili pepper plants. Additionally, paromomycin likely induced resistance as confirmed by the expression of pathogenesis-related (PR) genes: PR-1, β-1,3-glucanase, chitinase, PR-4, peroxidase, and PR-10, which enhanced plant defense against P. capsici in chili pepper. This finding indicates that AG-P 1441 plays a role in pathogen resistance upon the activation of defense genes, by secretion of the plant resistance elicitor, paromomycin.

Biocontrol of Ginseng Damping-off by Bacillus velezensis CC112 (Bacillus velezensis CC112 균주의 인삼 잘록병에 대한 생물적 방제)

  • Lee, Sang Yeob;Song, Jaekyeong;Park, Kyeong Hun;Weon, Hang Yeon;Kim, Jeong Jun;Han, Ji Hee
    • The Korean Journal of Mycology
    • /
    • v.44 no.3
    • /
    • pp.176-183
    • /
    • 2016
  • Bacillus velezensis CC112 inhibited the mycelial growth of several plant pathogens, including Rhizoctonia solani, causing damping-off on ginseng. The control efficacies of B. velezensis CC112 against R. solani by seed dipping in LB and BSM broth diluted 10 times, soil dipping, and soil drenching with LB broth diluted 10 times were 65.8%, 67.1%, and 64.2%, respectively. Treatment of soil drenching with the 100 times diluted prototype of B. velezensis CC112 against R. solani and Pythium sp. by soil revealed control efficacies of 77.3% and 65.7%, respectively. These results indicate that B. velezensis CC112 is a prospective biofungicide for the biological control of ginseng damping off.

Selection of Plant Growth-Promoting Pseudomonas spp. That Enhanced Productivity of Soybean-Wheat Cropping System in Central India

  • Sharma, Sushil K.;Johri, Bhavdish Narayan;Ramesh, Aketi;Joshi, Om Prakash;Sai Prasad, S.V.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1127-1142
    • /
    • 2011
  • The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.

Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

  • Fan, Ze-Yan;Miao, Cui-Ping;Qiao, Xin-Guo;Zheng, You-Kun;Chen, Hua-Hong;Chen, You-Wei;Xu, Li-Hua;Zhao, Li-Xing;Guan, Hui-Lin
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • Background: Rhizobacteria play an important role in plant defense and could be promising sources of biocontrol agents. This study aimed to screen antagonistic bacteria and develop a biocontrol system for root rot complex of Panax notoginseng. Methods: Pure-culture methods were used to isolate bacteria from the rhizosphere soil of notoginseng plants. The identification of isolates was based on the analysis of 16S ribosomal RNA (rRNA) sequences. Results: A total of 279 bacteria were obtained from rhizosphere soils of healthy and root-rot notoginseng plants, and uncultivated soil. Among all the isolates, 88 showed antagonistic activity to at least one of three phytopathogenic fungi, Fusarium oxysporum, Fusarium solani, and Phoma herbarum mainly causing root rot disease of P. notoginseng. Based on the 16S rRNA sequencing, the antagonistic bacteria were characterized into four clusters, Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetesi. The genus Bacillus was the most frequently isolated, and Bacillus siamensis (Hs02), Bacillus atrophaeus (Hs09) showed strong antagonistic activity to the three pathogens. The distribution pattern differed in soil types, genera Achromobacter, Acidovorax, Brevibacterium, Brevundimonas, Flavimonas, and Streptomyces were only found in rhizosphere of healthy plants, while Delftia, Leclercia, Brevibacillus, Microbacterium, Pantoea, Rhizobium, and Stenotrophomonas only exist in soil of diseased plant, and Acinetobacter only exist in uncultivated soil. Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

PCR-DGGE Analysis of the Fungal Community of Red-pepper Fields Utilizing Eco-friendly Farming Methods (PCR-DGGE를 이용한 친환경 농법 적용 고추경작지 내 진균의 군집 다양성 분석)

  • Jung, Byung-Kwon;Kim, Gwang-Seop;Song, Jin-Ha;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.292-299
    • /
    • 2013
  • In this study, we analyzed the changes in fungal populations of red-pepper fields employing eco-friendly farming methods, such as microbial agents and crop rotation, by using polymerase chain reactions coupled with denaturing gradient gel electrophoresis (PCR-DGGE). Primer specific for fungi were used to determine the contribution of domains to the microbial community. Analysis of planted and non-planted soil samples applying PCR-DGGE technology offered evaluation of long-term patterns in fungal species richness. To evaluate the stability of DGGE patterns from different soils, comparison of planted and non-planted soil samples were compared using PCR-DGGE. The number of DNA fragments obtained from all planted soil samples by DGGE separation was far greater (14 to 15 bands) than that of the non-planted soil samples (3 to 4 bands). In addition, 14 bands were observed from crop continuation soil treated with agrochemicals and 18 bands from crop rotation soil treated with microbial agents. The PCR-DGGE analysis suggests that the use of crop rotation and microbial agents benefits the fungal community more than crop continuation using agrochemicals. These results indicate that crop rotation with microbial agents was better able to support beneficial organisms, enable more effective biological control and maintain a healthier balance of nutrients, organic matter and microorganisms.