DOI QR코드

DOI QR Code

PCR-DGGE를 이용한 친환경 농법 적용 고추경작지 내 진균의 군집 다양성 분석

PCR-DGGE Analysis of the Fungal Community of Red-pepper Fields Utilizing Eco-friendly Farming Methods

  • 정병권 (영남대학교 미생물생명공학과) ;
  • 김광섭 (영남대학교 미생물생명공학과) ;
  • 송진하 (영남대학교 미생물생명공학과) ;
  • 김상달 (영남대학교 미생물생명공학과)
  • Jung, Byung-Kwon (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Gwang-Seop (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Song, Jin-Ha (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University) ;
  • Kim, Sang-Dal (Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University)
  • 투고 : 2013.03.06
  • 심사 : 2013.06.19
  • 발행 : 2013.09.28

초록

본 연구에서는 분자생물학적 기법인 PCR-DGGE를 사용하여 친환경 농법을 적용한 고추경작지에서 서식하는 진균의 군집 변화를 분석하고자 하였다. 먼저 토양으로부터 추출한 DNA는 DGGE 분석을 위해 진균의 universal primer인 ITS 1/4 primer set를 사용하여 nested-PCR을 수행하였으며, 증폭된 산물을 사용하여 DGGE를 수행한 결과 진균의 군집을 나타내는 band의 수는 고추 정식 전에는 3-4개에 불과했으나 고추를 정식한 후에는 전체 처리구에서 평균 15개로 조사되어 작물의 정식이 진균의 밀도 및 다양성을 증가시키는 것으로 확인되었다. 처리구 별로는 윤작과 컨소시엄 미생물제제를 동시에 적용한 고추 경작지에서 band 수가 18개로 나타나 가장 많은 것으로 조사되었다. 반면에 연작지의 화학농약 처리구에서는 band의 수가 14개로 나타나 처리구 중에서 진균의 다양성이 가장 낮은 것으로 확인되었다. 또한 식물에 질병을 일으키는 주요 병원성 진균의 DNA를 marker로 사용하여 각 처리구 별로 패턴을 비교한 결과, 연작지에서 모잘록병을 일으키는 R. solani AG-1 (IB)이 존재함을 확인할 수 있었다. 또한 염기서열 분석을 통해 우점종을 조사한 결과, 고추 정식 전에는 Paraphaeosphaeria quadriseptata, 정식 후에는 Mortierella chlamydospora, Cucurbitaria berberidis 및 Chaetomium globosum 종이 우점하고 있는 것으로 확인되었다. 처리구 간의 유사성 분석에서는 연작지의 컨소시엄 미생물제제 처리구와 윤작지의 컨소시엄 미생물제제 처리구가 유사한 것으로 나타났으며, 화학농약 처리구 역시 경작체계가 다름에도 불구하고 유사성이 있는 것으로 확인되었다.

In this study, we analyzed the changes in fungal populations of red-pepper fields employing eco-friendly farming methods, such as microbial agents and crop rotation, by using polymerase chain reactions coupled with denaturing gradient gel electrophoresis (PCR-DGGE). Primer specific for fungi were used to determine the contribution of domains to the microbial community. Analysis of planted and non-planted soil samples applying PCR-DGGE technology offered evaluation of long-term patterns in fungal species richness. To evaluate the stability of DGGE patterns from different soils, comparison of planted and non-planted soil samples were compared using PCR-DGGE. The number of DNA fragments obtained from all planted soil samples by DGGE separation was far greater (14 to 15 bands) than that of the non-planted soil samples (3 to 4 bands). In addition, 14 bands were observed from crop continuation soil treated with agrochemicals and 18 bands from crop rotation soil treated with microbial agents. The PCR-DGGE analysis suggests that the use of crop rotation and microbial agents benefits the fungal community more than crop continuation using agrochemicals. These results indicate that crop rotation with microbial agents was better able to support beneficial organisms, enable more effective biological control and maintain a healthier balance of nutrients, organic matter and microorganisms.

키워드

참고문헌

  1. Borresen AL, Hovig E, Brogger A. 1988. Detection of base mutations in genomic DNA using denaturing gradient gelelectrophoresis (DGGE) followed by transfer and hybridization with gene-specific probes. Mutat. Res. 202: 77-83. https://doi.org/10.1016/0027-5107(88)90166-2
  2. Bridge P, Spooner B. 2001. Soil fungi: diversity and detection. Plant Soil. 232: 147-154.
  3. De Ley FAAM, Lynch JM. 1997. Functional diversity of the rhizosphere, In: Ogoshi A, Kobayashi K, Homma Y, Kadoma F, Kondo N, Akino S. (ed.), Plant growth-promoting rhizobacteria. Proceedings of the Fourth International Workshop on plant-growth promoting rhizobacteria. ECD, Paris, France. pp. 38-43.
  4. Eeva JV, Jarkko H. 2000. Direct analysis of ood-inhabiting fungi using denaturing gradient gel electrophoresis of amplified ribosomal DNA. Mycol. Res. 104: 927-936. https://doi.org/10.1017/S0953756200002471
  5. Esitken A, Ercisli S, Karlidag H, Sahin F. 2005. Potential use of plant growth promoting rhizobacteria (PGPR) in organic apricot production. Proc. Int. Sci. Conf., pp. 90-97.
  6. Hovig E, Smithsorensen B, Brogger A, Borresen AL. 1991. Constant denaturant gel-electrophoresis, a modification of denaturing gradient gel-electrophoresis, in mutation detection. Mutat. Res. 262: 63-71. https://doi.org/10.1016/0165-7992(91)90108-G
  7. Ian CA, Colin DC, James IP. 2003. Potential bias of fungal 18S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ. Microbiol. 5: 36-47. https://doi.org/10.1046/j.1462-2920.2003.00383.x
  8. Jung HK, Kim JR, Woo SM, Kim SD. 2006. An auxin producing plant growth promoting rhizobacterium bacillus subtilis ah18 which has siderophore-producing biocontol activity. Korean J. Microbiol. Biotechnol. 34: 94-100.
  9. Jung HK, Kim JR, Woo SM, Kim SD. 2007. Selection of the auxin, siderophore and cellulase- producing PGPR, Bacillus licheniformis K11 and its plant growth promoting mechanisms. J. Korean Soc. Appl. Biol. Chem. 50: 23-28.
  10. Kirk PM, Cannon PF, Minter DW, Stalpers JA. 2008. Dictionary of the Fungi (10th ed.). Wallingford, UK: CABI. pp. 131.
  11. Lee ET, Kim SD. 2000. Selection and actifungal activity of antagonistic bacterium Pseudomonas sp. 2112 against redpepper rotting Phytophthora capsici. Korean J. Appl. Microbiol. Biotechnol. 28: 334-340.
  12. Lee ET, Kim SD. 2001. An antifungal substance, 2,4- Diacetylphloroglucinol, produced from antagonistic bacterium Pseudomonas fluorescens 2112 against phytophthora capsici. Korean J. Appl. Microbiol. Biotechnol. 29: 37-42.
  13. Lee ET, Lim SK, Nam DH, Khang YH, Kim SD. 2003. Pyoverdin2112 of Pseudomonas fluorescens 2112 inhibits Phytophthora capsici, a red-pepper blight-causing fungus. J. Microbiol. Biotechnol. 13: 415-421.
  14. Lessa EP, Applebaum G. 1993. Screening techniques for detecting allelic variation in DNA sequences. Mol. Ecol. 2: 119-129. https://doi.org/10.1111/j.1365-294X.1993.tb00006.x
  15. Lumsden RD. 1981. Ecology of mycoparasitism. In: Wicklow DT, Carroll GC. (ed.), The fungal community. Marcel Dekker, Inc., New York, N.Y., pp. 295-328.
  16. Marschner P, Crowley DE, Lieberei R. 2001. Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11: 297-302.
  17. May LA, Smiley B, Schmidt MG. 2001. Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can. J. Microbiol. 47: 829-841. https://doi.org/10.1139/w01-086
  18. Muyzer G, de Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplifi ed genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700.
  19. Paranagama PA, Wijeratne EM, Gunatilaka AA. 2007. Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii. J. Nat. Prod. 70: 1939-1945. https://doi.org/10.1021/np070504b
  20. Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, et al. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plantdependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742-4751. https://doi.org/10.1128/AEM.67.10.4742-4751.2001
  21. Smit E, Leeflang P, Glandorf B, Dirk van Elsas J, Wernars K. 1999. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65: 2614-2621.
  22. Söderberg KH, Olsson PA, Baath E. 2002. Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol. Ecol. 40: 223-231. https://doi.org/10.1016/S0168-6496(02)00233-7
  23. Tao G, Liu ZY, Hyde KD, Liu XZ, Yu ZN. 2008. Whole rDNA analysis reveals novel and endophytic fungi in Bletilla ochracea (Orchidaceae). Fungal Diver. 33: 101-122.
  24. Thorn G. 1997. The fungi in soil. In: van Elsas JD, Wellington EMH, Trevors JT. (Eds.), Mod. Soil Microbiol., Marcel Dekker, New York, pp. 63-127.
  25. Thorn RG, Reddy CA, Harris D, Paul EA. 1996. Isolation of saprophytic basidiomycetes from soil. Appl. Environ. Microbiol. 62: 4288-4292.
  26. Tunlid A, Hoitink HAJ, Low C, White DC. 1989. Characterization of bacteria that suppress Rhizoctonia damping-off in bark compost media by analysis of fatty acid biomarkers. Appl. Environ. Microbiol. 55: 1368-1374.
  27. Watanabe T. 1990. Zygospore induction in Mortierella chlamydospora by the soaking-plain-water-agarculture method. Mycologia, 278-282.
  28. Woo SM, Kim SD. 2007. Confirmation of non-siderophore antifugal substance and cellulase from Bacillus licheniformis K11 containing antagonistic ability and plant growth promoting activity. J. Life Sci. 17: 983-989. https://doi.org/10.5352/JLS.2007.17.7.983