DOI QR코드

DOI QR Code

Selection of Plant Growth-Promoting Pseudomonas spp. That Enhanced Productivity of Soybean-Wheat Cropping System in Central India

  • Sharma, Sushil K. (Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology) ;
  • Johri, Bhavdish Narayan (Department of Microbiology, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology) ;
  • Ramesh, Aketi (Directorate of Soybean Research, ICAR) ;
  • Joshi, Om Prakash (Directorate of Soybean Research, ICAR) ;
  • Sai Prasad, S.V. (Regional Station, Indian Agricultural Research Institute, ICAR)
  • Received : 2010.12.13
  • Accepted : 2011.07.25
  • Published : 2011.11.28

Abstract

The aim of this investigation was to select effective Pseudomonas sp. strains that can enhance the productivity of soybean-wheat cropping systems in Vertisols of Central India. Out of 13 strains of Pseudomonas species tested in vitro, only five strains displayed plant growth-promoting (PGP) properties. All the strains significantly increased soil enzyme activities, except acid phosphatase, total system productivity, and nutrient uptake in field evaluation; soil nutrient status was not significantly influenced. Available data indicated that six strains were better than the others. Principal component analysis (PCA) coupled cluster analysis of yield and nutrient data separated these strains into five distinct clusters with only two effective strains, GRP3 and HHRE81 in cluster IV. In spite of single cluster formation by strains GRP3 and HHRE81, they were diverse owing to greater intracluster distance (4.42) between each other. These results suggest that the GRP3 and HHRE81 strains may be used to increase the productivity efficiency of soybean-wheat cropping systems in Vertisols of Central India. Moreover, the PCA coupled cluster analysis tool may help in the selection of other such strains.

Keywords

References

  1. Ahmad, F., I. Ahmad, and M. S. Khan. 2008. Screening of freeliving rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163: 173-181. https://doi.org/10.1016/j.micres.2006.04.001
  2. Andreote, F. D., U. N. da Rocha, W. L. Araujo, J. L. Azevedo, and L. S. van Overbeek. 2010. Effect of bacterial inoculation, plant genotype and development stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum). Antonie Van Leeuwenhoek. 97: 389-399. https://doi.org/10.1007/s10482-010-9421-9
  3. Asghar, H. N., Z. A. Zahir, and M. Arshad. 2004. Screening rhizobacteria for improving the growth, yield and oil content of canola (Brassica juncea L.). Aust. J. Agric. Res. 55: 187-194. https://doi.org/10.1071/AR03112
  4. Bai, Y., X. Zhou, and D. L. Smith. 2003. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci. 43: 1774-1781. https://doi.org/10.2135/cropsci2003.1774
  5. Barea, J. M., M. J. Poto, R. Azcon, and C. Azcon-Aguilar. 2005. Microbial co-operation in the rhizosphere. J. Exp. Bot. 56: 1761-1778. https://doi.org/10.1093/jxb/eri197
  6. Bradner, J. R., M. Gillings, and K. M. H. Nevalainen. 1999. Qualitative assessment of hydrolytic activities in antarctic microfungi grown at different temperatures on solid media. World J. Microbiol. Biotechnol. 15: 131-132. https://doi.org/10.1023/A:1008855406319
  7. Boruvka, L., O. Vacek, and J. Jehlicka. 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma 128: 289-300. https://doi.org/10.1016/j.geoderma.2005.04.010
  8. Bric, J. M., R. M. Bostock, and S. E. Silverstone. 1991. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535-538.
  9. Brookes, P. C. 1995. The use of microbiological parameters in monitoring soil pollution by heavy metals. Biol. Fertil. Soils 19: 269-279. https://doi.org/10.1007/BF00336094
  10. Caravaca, F., C. Azcon-Aguilar, D. Figueroa, and A. Roldan. 2003. Alteration in the rhizosphere soil properties of afforested Rhamnus lycioides seedlings in short-term response to inoculation with Glomus intraradices and organic amendment. Environ. Manage. 31: 412-420. https://doi.org/10.1007/s00267-002-2879-0
  11. Cattelan, A. J., P. G. Hartel, and J. J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63: 1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  12. Chesnin, L. and C. H. Yen. 1950. Turbidimetric determination of available sulphate. Soil Sci. Soc. Am. Proc. 15: 149-151.
  13. Chhonkar, P. K. and J. C. Tarafdar. 1981. Characteristic and location of phosphatases in soil plant system. J. Ind. Soc. Soil Sci. 29: 215-219.
  14. Dakora, F. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low nutrient environments. Plant Soil 245: 35-47. https://doi.org/10.1023/A:1020809400075
  15. Dey, R., K. K. Pal, D. M. Bhat, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogea L.) by application of plant growth rhizobacteria. Microbiol. Res. 159: 341-394.
  16. Dileep Kumar, B. S. and H. C. Dube. 1992. Seed bacterization with a fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol. Biochem. 24: 539-542. https://doi.org/10.1016/0038-0717(92)90078-C
  17. Dubey, S. K. 1996. Combined effect of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas striata on nodulation, yield attributes and yield of rainfed soybean (Glycine max) under different sources of phosphorus in Vertisols. Ind. J. Agric. Sci. 66: 28-32.
  18. Dye, D. W. 1962. The inadequacy of the usual determinative tests for identification of Xanthomonas spp. NZT Sci. 5: 393- 416.
  19. Egamberdiyeva, D. and G. Hoflich. 2003. Influence of growthpromoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35: 973-978. https://doi.org/10.1016/S0038-0717(03)00158-5
  20. Founoune, H., R. Duponnois, J. M. Meyer, J. Thioulouse, D. Masse, J. L. Chotte, and M. Neyra. 2002. Interactions between ectomycorrhizal symbiosis and fluorescent pseudomonads on Acacia holosericea: Isolation of mycorrhiza helping bacteria (MHB) from Soudano-Sahelian soil. FEMS Microbiol. Ecol. 1370: 1-10.
  21. Gaur, R., N. Shani, Kawaljeet, B. N. Johri, P. Rossi, and M. Aragno. 2004. Diacetylphlorolucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Curr. Sci. 86: 453-457.
  22. Ghiorse, W. C. 1998. The biology of manganese transforming microorganisms in soils, pp. 75-85. In R. D. Graham, R. J. Hannam, and N. C. Uren (eds.). Manganese in Soils and Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  23. Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117. https://doi.org/10.1139/m95-015
  24. Glick, B. R. 2005. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol. Lett. 251: 1-7. https://doi.org/10.1016/j.femsle.2005.07.030
  25. Glick, B. R., D. M. Karaturovic, and P. C. Newell. 1999. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can. J. Microbiol. 4: 533-536.
  26. Grayston, S. J., S. Wang, C. D. Campbell, and A. C. Edwards. 1998. Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol. Biochem. 30: 369-378. https://doi.org/10.1016/S0038-0717(97)00124-7
  27. Guiffre, L., R. Romaniuk, M. E. Conti, and N. Bartoloni. 2006. Multivariate evaluation by quality indicators of no-tillage system in Argiudolls of rolling pampa (Argentina). Biol. Fertil. Soils 42: 556-560. https://doi.org/10.1007/s00374-005-0051-8
  28. Hanway, J. J. and H. Haidel. 1952. Soil analysis methods as used in Iowa State College Soil Test Laboratory. Iowa State College Agric. Bull. 57: 1-13.
  29. Jackson, M. L. 1973. Soil Chemical Analysis. Prentice Hall, New Delhi, India
  30. Keeney, D. R. and D. W. Nelson. 1982. Nitrogen - inorganic form, pp. 673-698. In A. L. Page (ed.). Methods of Soil Analysis, 2nd Ed. American Society of Agronomy, Madison, WI.
  31. Kertesz, M. A. 2004. Metabolism of sulphur containing organic compounds, pp. 323-357. In J. Ramos (ed.). Pseudomonas, Vol 3. Kluwer Academic/Plenum, New York, USA.
  32. Khalid, A., M. Arshad, and Z. A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96: 473-480. https://doi.org/10.1046/j.1365-2672.2003.02161.x
  33. Kloepper, J. W., M. N. Schroth, and T. D. Miller. 1980. Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70: 1078-1082. https://doi.org/10.1094/Phyto-70-1078
  34. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35: 480-487. https://doi.org/10.1016/j.apsoil.2006.10.006
  35. Koide, R. and H. A. Mooney. 1987. Revegetation of serpentine substrate: Response to phosphate application. Environ. Manage. 11: 563-567. https://doi.org/10.1007/BF01867662
  36. Lewis, T. A., L. Leach, S. Morales, P. R. Austin, H. J. Hartwell, B. Kaplan, et al. 2004. Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2, 6-bis (monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ. Microbiol. 6: 159-169. https://doi.org/10.1046/j.1462-2920.2003.00558.x
  37. Lindsay, W. L. and W. A. Norvell. 1987. Development of a DTPA test for Zn, Fe, and Cu. Soil Sci. Soc. Am. J. 42: 412- 428.
  38. Lork, H. 1948. Production of hydrocyanic acid by bacteria. Physiol. Plant. 1: 142-146. https://doi.org/10.1111/j.1399-3054.1948.tb07118.x
  39. Lucas-Garcia, J. A., A. Probonza, B. Ramos, J. Barriuso, and F. J. Gutierrez-Manero. 2004. Effects of inoculation with plant growth promoting rhizobacteria (PGPR) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv. Osumi. Plant Soil 267: 143-153. https://doi.org/10.1007/s11104-005-4885-5
  40. Mader, P., F. Kiser, A. Adholeya, R. Singh, H. S. Uppal, A. K. Sharma, et al. 2010. Inoculation of root microorganisms for sustainable wheat-rice and wheat-blackgram rotations in India. Soil Biol. Biochem. 43: 609-619.
  41. Marschner, P., Q. Fu, and Z. Rengel. 2003. Manganese availability and microbial populations in the rhizosphere of wheat genotypes differing in tolerance to Mn deficiency. J. Plant Nutr. Soil Sci. 166: 712-718. https://doi.org/10.1002/jpln.200320333
  42. Messina, M. J. 1995. Soy foods: Their role in disease prevention and treatment, pp. 443-447. In K. Liu (ed.). Soybean: Chemistry, Technology and Utilization. Chapman and Hall, New York, USA.
  43. Naseby, D. C. and J. M. Lynch. 1997. Rhizosphere and enzymes as indicators of perturbations caused by enzyme substrate addition and inoculation of a genetically modified strain of Pseudomonas fluorescens on wheat seed. Soil Biol. Biochem. 29: 1353-1362. https://doi.org/10.1016/S0038-0717(97)00061-8
  44. Naseby, D. C. and J. M. Lynch. 1998. Impact of wild type and genetically modified Pseudomonas fluorescens on soil enzyme activities and microbial population structure in the rhizosphere of pea. Mol. Ecol. 7: 367-376. https://doi.org/10.1046/j.1365-294x.1998.00424.x
  45. Naseby, D. C., Y. Moenne-Locoz, J. Powell, F. O. Gora, and J. M. Lynch. 1998. Soil enzyme activities in the rhizosphere of field-grown sugar beet inoculated with biocontrol agent Pseudomonas fluorescens F113. Biol. Fertil. Soils 27: 39-43. https://doi.org/10.1007/s003740050397
  46. Naseby, D. C., J. A. Pascual, and J. M. Lynch. 2001. Effects of biocontrol strains of Trichoderma on plant growth, Pithium ultimum population, soil microbial communities and soil enzyme activities. J. Appl. Microbiol. 88: 161-169. https://doi.org/10.1046/j.1365-2672.2000.00939.x
  47. Okon, Y. 1985. Azospirillum as a potential inoculant for agriculture. Trends Biotechnol. 3: 223-228. https://doi.org/10.1016/0167-7799(85)90012-5
  48. Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically grown raspberry. Sci. Hort. 111: 38-43. https://doi.org/10.1016/j.scienta.2006.09.002
  49. Oliveira, A. L. M., S. Urquiagas, J. Dobereiner, and J. I. Baldani. 2002. The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant Soil 242: 205-215. https://doi.org/10.1023/A:1016249704336
  50. Peix, A., A. Valverde, R. Rivas, J. M. Igual, M. Ram rez- Bahena, P. F. Mateos, et al. 2007. Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 57: 1286-1290. https://doi.org/10.1099/ijs.0.64621-0
  51. Pikovskaya, R. E. 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Mikrobiologiya 17: 362-370.
  52. Probanza, A., J. A. Lucas, N. Acero, and F. J. Gutiérrez- Manero. 1996. The influence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. I. Characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182: 59-66. https://doi.org/10.1007/BF00010995
  53. Ramesh, A., S. D. Billore, A. Singh, O. P. Joshi, V. S. Bhatia, and V. P. S. Bundela. 2004. Arylsulphatase activity and its relationship with soil properties under soybean (Glycine max) based cropping systems. Ind. J. Agric. Sci. 74: 9-13.
  54. Rao Ch, V. S., I. P. Sachan, and B. N. Johri. 1999. Influence of fluorescent pseudomonads on growth and nodulation of lentil (Lens esculentus) in Fusarium infested soils. Ind. J. Microbiol. 39: 23-36.
  55. Reddy, B. N., P. B. Devidayal, Gawand, A. Ramesh, and G. Pratibha. 2004. Oilseed Cultivars for Moisture and Nutrient Stress. Directorate of Oilseed Research, Hyderabad, A.P., India.
  56. Roesti, D., R. Gaur, B. N. Johri, G. Imfeld, S. Sharma, Kawaljeet, and M. Aragno. 2006. Plant growth stage, fertilizer management and bioinoculant of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38: 1111-1120. https://doi.org/10.1016/j.soilbio.2005.09.010
  57. Rodriguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17: 319-339.
  58. Sahin, F., R. Cakmakci, and F. Kantar. 2004. Sugar beet and barley yields in relation to inoculation with $N_{2}$-fixing and phosphate solubilizing bacteria. Plant Soil 265: 123-129. https://doi.org/10.1007/s11104-005-0334-8
  59. Sai Prasad, S. V., R. Singh, S. R. Yadav, P. K. Varma, and H. N. Pandey. 2005. Presence of $\beta$-carotene in durum wheat (Triticum durum) products. Ind. J. Agric. Sci. 75: 165-166.
  60. Sarathchandra, S. U. and K. W. Perrott. 1981. Determination of phosphatase and sulphatase activity in soils. Soil Biol. Biochem. 13: 543-545. https://doi.org/10.1016/0038-0717(81)90050-X
  61. Saravanan, V. S., S. R. Subramoniam, and S. Anthoni Raj. 2003. Assessing in vitro solubilizing potential of different zinc solubilizing bacterial (ZSB) isolates. Braz. J. Microbiol. 34: 121-125.
  62. Schinner, F., R. Ohlinger, E. Kandler, and R. Magnensin. 1995. Methods in Soil Biology. Springer Lab Manual. Springer, Berlin.
  63. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  64. Sharma, A. and B. N. Johri. 2003. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron-limited conditions. Microbiol. Res. 158: 243-248. https://doi.org/10.1078/0944-5013-00197
  65. Sharma, M. P., K. Srivastava, and S. K. Sharma. 2010. Biochemical characterization and metabolic diversity of soybean rhizobia isolated from Malwa region of Central India. Plant Soil Environ. 56: 375-383.
  66. Sharma, A., B. N. Johri, A. K. Sharma, and B. R. Glick. 2003. Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol. Biochem. 35: 887-894. https://doi.org/10.1016/S0038-0717(03)00119-6
  67. Shukla, M. K., R. Lal, and M. Ebinger. 2004. Principal component analysis for predicting corn biomass and grain yield. Soil Sci. 169: 215-224. https://doi.org/10.1097/01.ss.0000122521.03492.eb
  68. Singh, R. K. and B. D. Chaudhary. 1977. Biometrical Methods in Quantitative Genetic Analysis, pp. 215-218. Kalyani Publishers, New Delhi, India.
  69. Sturz, A. V. and B. R. Christie. 2003. Beneficial microbial allelopathies in the root zone: The management of soil quality and plant disease with rhizobacteria. Soil Tillage Res. 72: 107- 123. https://doi.org/10.1016/S0167-1987(03)00082-5
  70. Suslow, T. W. and M. N. Schroth. 1982. Role of deleterious rhizobacteria as minor pathogens in reducing crop growth. Phytopathology 72: 111-115. https://doi.org/10.1094/Phyto-72-111
  71. Tabatabai, M. A. 1994. Soil enzymes, pp. 775-883. In R. W. Wearrer, S. Angle, P. Bottomley, D. Bezdicek, S. Smith, M. A. Tabatabai, and A. Wollum (eds.). Methods of Soil Analysis, Part 2, Microbiological and Biochemical Properties. SSSA Book, Series No. 5. Soil Science Society of America Inc., Madison, WI, USA.
  72. Tabatabai, M. A. and M. Fu. 1992. Extraction of enzymes from soil, pp. 197-227. In G. Stotrky and J. M. Bollag (ed.). Soil Biochemistry, Vol. 7. Marcel Dekker, New York, USA.
  73. Tang, W. H. 1994. Yield-increasing bacteria (Y1B) and biocontrol of sheath blight of rice, pp. 267-279. In M. H. Ryder, P. M. Stephens, and G. D. Bowen (eds.). Improving Plant Productivity with Rhizosphere Bacteria. CSIRO, Adelaide, Australia.
  74. Tarafdar, J. C., B. Kiran, and A. V. Rao. 1989. Phosphatase activity and distribution of phosphorus in arid soil profiles under different land use patterns. J. Arid Environ. 16: 29-34.
  75. Tarafdar, J. C. and H. Marschner. 1994. Phosphatase activity in the rhizosphere and hyphosphere of a VA-mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 26: 387-395. https://doi.org/10.1016/0038-0717(94)90288-7
  76. Tarafdar, J. C. and A. V. Rao. 1996. Contribution of Aspergillus strains to acquisition of phosphorus by wheat (Triticum aestivum L.) and chickpea (Cicer arietinum Linn) grown in loamy sand soil. Appl. Soil Ecol. l3: 109-114.
  77. Teather, R. M. and P. J. Wood. 1982. Use of Congo Red polysaccharide interaction in enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl. Environ. Microbiol. 43: 777-780.
  78. Tilak, K. V. B. R., N. Ranganayaki, K. K. Pal, R. De, A. K. Saxena, C. S. Nautiyal, et al. 2005. Diversity of plant growth and soil health supporting bacteria. Curr. Sci. 89: 136-150.
  79. Van Loon, L. C. 2007. Plant responses to plant-growthpromoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254. https://doi.org/10.1007/s10658-007-9165-1
  80. Vessey, K. V. 2003. Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255: 571-586. https://doi.org/10.1023/A:1026037216893
  81. Watanabe, F. S. and S. R. Olsen. 1965. Test of ascorbic acid method for determining phosphorus in water and sodium bicarbonate extracts of soil. Proc. Soil Sci. Soc. Am. 29: 677- 678. https://doi.org/10.2136/sssaj1965.03615995002900060025x
  82. Williams, C. H. and A. Steinbergs. 1959. Soil sulphur fraction as chemical indices of available sulphur in some Australian soils. Aust. J. Res. 10: 342-352.
  83. Yadav, R. L. and A. V. M. Subba Rao. 2001. Altas of Cropping System in India. PDCSR Bulletin No. 2001-02. Project Directorate for Cropping System Research, Modipuram, Meerut, U.P., India.

Cited by

  1. Plant Growth-Promoting Traits in Enterobacter cloacae subsp. dissolvens MDSR9 Isolated from Soybean Rhizosphere and its Impact on Growth and Nutrition of Soybean and Wheat Upon Inoculation vol.3, pp.1, 2011, https://doi.org/10.1007/s40003-014-0100-3
  2. Effect of phosphorus solubilizing bacteria on some soil properties, wheat yield and nutrient contents vol.6, pp.3, 2017, https://doi.org/10.18393/ejss.293157
  3. Plant growth-promoting endophytic bacteria on maize and sorghum1 vol.49, pp.None, 2011, https://doi.org/10.1590/1983-40632019v4956241
  4. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops vol.10, pp.1, 2011, https://doi.org/10.1007/s13205-019-1994-z
  5. The Status of Soil Microbiome as Affected by the Application of Phosphorus Biofertilizer: Fertilizer Enriched with Beneficial Bacterial Strains vol.21, pp.21, 2011, https://doi.org/10.3390/ijms21218003
  6. Characterization and low-cost preservation of Chromobacterium violaceum strain TRFM-24 isolated from Tripura state, India vol.19, pp.1, 2011, https://doi.org/10.1186/s43141-021-00241-z