• Title/Summary/Keyword: Soil microbiology

Search Result 1,367, Processing Time 0.035 seconds

Archaeal Communities in Mangrove Soil Characterized by 16S rRNA Gene Clones

  • Yan, Bing;Hong, Kui;Yu, Zi-Niu
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.566-571
    • /
    • 2006
  • An archaeal 16S rRNA gene library was constructed from mangrove soil. Phylogenetic analysis revealed archaea in mangrove soil including the Crenarchaeota (80.4%) and Euryarchaeota (19.6%) phyla. The archaeal community in mangrove soil appears to be a mixture of organisms found in a variety of environments with the majority being of marine origin.

Application of Amplicon Pyrosequencing in Soil Microbial Ecology (토양미생물 생태 연구를 위한 증폭 파이로시퀀싱 기법의 응용)

  • Ahn, Jae-Hyung;Kim, Byung-Yong;Kim, Dae-Hoon;Song, Jaekyeong;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1073-1085
    • /
    • 2012
  • Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.

Identification of Mutanase-Producing Microbispora rosea from the Soil of Chonnam Province

  • Chung, Jin;Kim, Hong-Hee;Shin, Ju-Hye;Lee, Hyun-Chul;Lee, Zang-Hee;Oh, Jong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.677-684
    • /
    • 2001
  • To isolate mutanse-producing bacteria, soil samples were collected from several areas in chonnam Province, South Korea. A total of 70 strains of actinomycetes were isolated from the soil samples. All isolated actinomycetes were inoculated on mutanase screening media to identify new bacterial strains producing mutanase activity. One strain in particular exhibited a strong mutanase-producing activity, and was identified as Microbispora rosea based on its morphological, cultural, and physiological characteristics, and also by 16S rDNA sequences.

  • PDF

Penicillium from Rhizosphere Soil in Terrestrial and Coastal Environments in South Korea

  • Park, Myung Soo;Lee, Jun Won;Kim, Sung Hyun;Park, Ji-Hyun;You, Young-Hyun;Lim, Young Woon
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.431-442
    • /
    • 2020
  • Penicillium, the most common genus plays an important ecological role in various terrestrial and marine environments. However, only a few species have been reported from rhizosphere soil. As part of a project to excavate Korean indigenous fungi, we investigated rhizosphere soil of six plants in the forest (terrestrial habitat) and sand dunes (coastal habitat) and focused on discovering Penicillium species. A total of 64 strains were isolated and identified as 26 Penicillium species in nine sections based on morphological characteristics and the sequence analysis of β-tubulin and calmodulin. Although this is a small-scale study in a limited rhizosphere soil, eight unrecorded species and four potential new species have been identified. In addition, most Penicillium species from rhizosphere soil were unique to each plant. Penicillium halotolerans, P. scabrosum, P. samsonianum, P. jejuense, and P. janczewskii were commonly isolated from rhizosphere soil. Eight Penicillium species, P. aurantioviolaceum, P. bissettii, P. cairnsense, P. halotolerans, P. kananaskense, P. ortum, P. radiatolobatum, and P. verhagenii were recorded for the first time in Korea. Here, we provide the detailed morphological description of these unrecorded species.

Four Unrecorded Aspergillus Species from the Rhizosphere Soil in South Korea

  • Lee, Jun Won;Kim, Sung Hyun;You, Young-Hyun;Lim, Young Woon;Park, Myung Soo
    • Mycobiology
    • /
    • v.49 no.4
    • /
    • pp.346-354
    • /
    • 2021
  • The genus Aspergillus is commonly isolated from various marine and terrestrial environments; however, only a few species have been studied in rhizosphere soil. As part of the Korean indigenous fungal excavation project, we investigated fungal diversity from rhizosphere soil, focusing on Aspergillus species. A total of 13 strains were isolated from the rhizosphere soil of three different plants. Based on phylogenetic analysis of β-tubulin and calmodulin and morphological characteristics, we identified five Aspergillus species. A. calidoustus and A. pseudodeflectus were commonly isolated from the rhizosphere soil. Four species were confirmed as unrecorded species in Korea: A. calidoustus, A. dimorphicus, A. germanicus, and A. pseudodeflecuts. The detailed morphological descriptions of these unrecorded species are provided.

Analysis of Community Structure of Metabolically Active Bacteria in a Rice Field Subjected to Long-Term Fertilization Practices

  • Ahn, Jae-Hyung;Choi, Min-Young;Lee, Hye-Won;Kim, Byung-Yong;Song, Jaekyeong;Kim, Myung-Sook;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.585-592
    • /
    • 2013
  • To estimate the effect of long-term fertilization on metabolically active bacterial communities in a rice field, RNA was extracted from endosphere (rice root), rhizosphere, and bulk soil that had been subjected to different fertilization regimes for 59 years, and the 16S rRNAs were analyzed using the pyrosequencing method. The richness and diversity of metabolically active bacteria were higher in bulk soil than in the endosphere and rhizosphere, and showed no significant difference between non-fertilized and fertilized plots. Weighted UniFrac analysis showed that each compartment had characteristic bacterial communities and that the effect of long-term fertilization on the structure of bacterial community was more pronounced in bulk soil than in the endosphere and rhizosphere. The 16S rRNAs affiliated with Alphaproteobacteria and Firmicutes were more abundant in the endosphere than in bulk soil while those affiliated with Chloroflexi and Acidobacteria were more abundant in bulk soil than in the endosphere. Several dominant operational taxonomic units (clustered at a 97% similarity cut-off) showed different frequencies between non-fertilized and fertilized plots, suggesting that the fertilization affected their activities in the rice field.

Bacterial Mixture from Greenhouse Soil as a Biocontrol Agent Against Root-Knot Nematode, Meloidogyne incognita, on Oriental Melon

  • Seo, Byoung-Joo;Kumar, V.J. Rejish;Ahmad, Rather Irfan;Kim, Byung-Chun;Park, Wan;Park, So-Deuk;Kim, Se-Eun;Kim, Sang-Dal;Lim, Jeong-Heui;Park, Yong-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.114-117
    • /
    • 2012
  • The biological control efficacy of a greenhouse soil bacterial mixture of Lactobacillus farraginis, Bacillus cereus, and Bacillus thuringiensis strains with antinematode activity was evaluated against the root-knot nematode Meloidogyne incognita. Two control groups planted in soil drenched with sterile distilled water or treated with the broad-spectrum carbamate pesticide carbofuran were used for comparison. The results suggest that the bacterial mixture is effective as a biocontrol agent against the root-knot nematode.

Acidophilic Bacterial Communities of Soil and Enrichment Cultures from Two Abandoned Mine Sites of the Korean Peninsula

  • Mishra, Debaraj;Lee, Sun-Hee;Kim, Jae-Hee;Kim, Dong-Jin;Rhee, Young-Ha
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.4
    • /
    • pp.265-273
    • /
    • 2011
  • Bacterial diversity based on the denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene sequences was determined for soil samples from two abandoned mine sites and the corresponding enrichment cultures using soil sample as key inoculum. Sequencing analysis of DGGE bands obtained from both the soil samples matched mostly with sequences of uncultured and newly described organisms, or organisms recently associated with the acid mine drainage environment. However, the enrichment of soil samples in ferrous sulfate and elemental sulfur media yielded sequences that were consistent with well-known iron- and sulfur-oxidizing acidophilic bacteria. Analysis of enrichment cultures of soil samples from Dalsung mine revealed abundant ${\gamma}$-$Proteobacteria$, whereas that of Gubong mine sample displayed acidophilic groups of ${\gamma}$-$Proteobacteria$, ${\alpha}$-$Proteobacteria$, $Actinobacteria$ and $Firmicutes$. Chemical elemental analysis of the mine samples indicated that the Dalsung site contained more iron and sulfate along with other toxic components as compared with those of the Gubong site. Biogeochemistry was believed to be the primary control on the acidophilic bacterial group in the enrichment samples.