Browse > Article
http://dx.doi.org/10.7745/KJSSF.2012.45.6.1073

Application of Amplicon Pyrosequencing in Soil Microbial Ecology  

Ahn, Jae-Hyung (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Byung-Yong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Kim, Dae-Hoon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Song, Jaekyeong (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Weon, Hang-Yeon (Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.45, no.6, 2012 , pp. 1073-1085 More about this Journal
Abstract
Soil microbial communities are immensely diverse and complex with respect to species richness and community size. These communities play essential roles in agricultural soil because they are responsible for most of the nutrient cycles in the soil and influence the plant diversity and productivity. However, the majority of these microbes remain uncharacterized because of poor culturability. Next-generation sequencing techniques have revolutionized many areas of biology by providing cheaper and faster alternatives to Sanger sequencing. Among them, amplicon pyrosequencing is a powerful tool developed by 454 Life Sciences for assessing the diversity of complex microbial communities by sequencing PCR products or amplicons. This review summarizes the current opinions in amplicon sequencing of soil microbial communities, and provides practical guidance and advice on sequence quality control, aligning, clustering, OTU- and taxon-based analysis. The last section of this article includes a few representative studies conducted using amplicon pyrosequencing.
Keywords
Next generation sequencing; Amplicon pyrosequencing; Soil microbial ecology; Microbial diversity; Community structure;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, J.H., J. Song, B.Y. Kim, M.S. Kim, J.H. Joa, and H.Y. Weon. 2012. Characterization of the bacterial and archaeal communities in rice field soils subjected to long-term fertilization practices. J. Microbiol. 50:754-765.   DOI   ScienceOn
2 Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410.   DOI
3 Amann, R.I., W. Ludwig, and K.H. Schleifer. 1995. Phylogenetic identification and in-situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143-169.
4 Ashelford, K.E., N.A. Chuzhanova, J.C. Fry, A.J. Jones, and A.J. Weightman. 2005. At least 1 in 20 16S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl. Environ. Microbiol. 71:7724-7736.   DOI
5 Bartram, A.K., M.D.J. Lynch, J.C. Stearns, G. Moreno- Hagelsieb, and J.D. Neufeld. 2011. Generation of multimillionsequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Appl. Environ. Microbiol. 77:3846-3852.   DOI
6 Benson, D.A., I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, and E.W. Sayers. 2011. GenBank. Nucleic Acids Res. 39:D32-D37.   DOI
7 Caporaso, J.G., J. Kuczynski, J. Stombaugh, K. Bittinger, F.D. Bushman, E.K. Costello, N. Fierer, A.G. Pena, J.K. Goodrich, J.I. Gordon, G.A. Huttley, S.T. Kelley, D. Knights, J.E. Koenig, R.E. Ley, C.A. Lozupone, D. McDonald, B.D. Muegge, M. Pirrung, J. Reeder, J.R. Sevinsky, P.J. Tumbaugh, W.A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods. 7:335-336.   DOI
8 Caporaso, J.G., C.L. Lauber, W.A. Walters, D. Berg- Lyons, J. Huntley, N. Fierer, S.M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J.A. Gilbert, G. Smith, and R. Knight. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6:1621-1624.   DOI
9 Ludwig, W., O. Strunk, R. Westram, L. Richter, H. Meier, Yadhukumar, A. Buchner, T. Lai, S. Steppi, G. Jobb, W. Förster, I. Brettske, S. Gerber, A.W. Ginhart, O. Gross, S. Grumann, S. Hermann, R. Jost, A. König, T. Liss, R. Lüßmann, M. May, B. Nonhoff, B. Reichel, R. Strehlow, A. Stamatakis, N. Stuckmann, A. Vilbig, M. Lenke, T. Ludwig, A. Bode, and K.H. Schleifer. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371.   DOI   ScienceOn
10 Peplies, J., R. Kottmann, W. Ludwig, and F.O. Glöckner. 2008. A standard operating procedure for phylogenetic inference (SOPPI) using (rRNA) marker genes. Syst. Appl. Microbiol. 31:251-257.   DOI
11 Polz, M.F. and C.M. Cavanaugh. 1998. Bias in templateto- product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64:3724-3730.
12 Pruesse, E., J. Peplies, and F.O. Glockner. 2012. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics.
13 Qiu, X., L. Wu, H. Huang, P.E. McDonel, A.V. Palumbo, J.M. Tiedje, and J. Zhou. 2001. Evaluation of PCR- generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl. Environ. Microbiol. 67:880-887.   DOI   ScienceOn
14 Quince, C., A. Lanzen, R. Davenport, and P. Turnbaugh. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics. 12:38.   DOI   ScienceOn
15 Ranjard, L., D.P.H. Lejon, C. Mougel, L. Schehrer, D. Merdinoglu, and R. Chaussod. 2003. Sampling strategy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting analysis of fungal and bacterial communities. Environ. Microbiol. 5:1111-1120.   DOI
16 Rochelle, P.A., B.A. Cragg, J.C. Fry, R.J. Parkes, and A.J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15:215-225.   DOI
17 DeSantis, T.Z., P. Hugenholtz, N. Larsen, M. Rojas, E.L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G.L. Andersen. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069-5072.   DOI   ScienceOn
18 Chenna, R., H. Sugawara, T. Koike, R. Lopez, T.J. Gibson, D.G. Higgins, and J.D. Thompson. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res. 31:3497-3500.   DOI
19 Cole, J.R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, A.S. Kulam-Syed-Mohideen, D.M. McGarrell, T. Marsh, G.M. Garrity, and J.M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37:D141-D145.   DOI   ScienceOn
20 Cui, J., H. Meng, M. Nie, X. Chen, Z. Li, N. Bu, B. Li, J. Chen, Z. Quan, and C. Fang. 2012. Bacterial succession during 500 years of soil development under agricultural use. Eco. Res. 27:793-807.   DOI
21 Dolfing, J., A. Vos, J. Bloem, P.A.I. Ehlert, N.B. Naumova, and P.J. Kuikman. 2004. Microbial diversity in archived soils. Science. 306:813-813.
22 Edgar, R. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 5:113.   DOI   ScienceOn
23 Edgar, R.C., B.J. Haas, J.C. Clemente, C. Quince, and R. Knight. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27:2194-2200.   DOI
24 Eilers, K.G., C.L. Lauber, R. Knight, and N. Fierer. 2010. Shifts in bacterial community structure associated with inputs of low molecular weight carbon compounds to soil. Soil Biol. Biochem. 42:896-903.   DOI
25 Garrity, G.M., T.G. Lilburn, J.R. Cole, S.H. Harrison, J. Euzeby, and B.J. Tindall. 2007. The taxonomic outline of Bacteria and Archaea. TOBA Release 7.7. 10.1601 /TOBA7.7. Michigan State University Board of Trustees, Michigan, USA.
26 Schloss, P.D., S.L. Westcott, T. Ryabin, J.R. Hall, M. Hartmann, E.B. Hollister, R.A. Lesniewski, B.B. Oakley, D.H. Parks, C.J. Robinson, J.W. Sahl, B. Stres, G.G. Thallinger, D.J. Van Horn, and C.F. Weber. 2009. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537- 7541.   DOI
27 Rousk, J., E. Baath, P.C. Brookes, C.L. Lauber, C. Lozupone, J.G. Caporaso, R. Knight, and N. Fierer. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4:1340-1351.   DOI
28 Schloss, P.D. and J. Handelsman. 2005. Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl. Environ. Microbiol. 71:1501-1506.   DOI   ScienceOn
29 Schloss, P.D. 2009. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE. 4:e8230.   DOI
30 Schloss, P.D. 2010. The effects of alignment quality, distance calculation method, sequence filtering, and region on the analysis of 16S rRNA gene-based studies. PLoS Comput. Biol. 6:e1000844.   DOI
31 Schloss, P.D. and S.L. Westcott. 2011. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77:3219-3226.   DOI
32 Scholz, M.B., C.-C. Lo, and P.S.G. Chain. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr. Opin. Biotech. 23:9-15.   DOI   ScienceOn
33 Stackebrandt, E. and B.M. Goebel. 1994. A place for DNA-DNA reassociation and 16S ribosomal-RNA sequenceanalysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44:846-849.   DOI   ScienceOn
34 Acosta-Martínez, V., S.E. Dowd, Y. Sun, D. Wester, and V. Allen. 2010b. Pyrosequencing analysis for characterization of soil bacterial populations as affected by an integrated livestock-cotton production system. Appl. Soil Ecol. 45:13-25.   DOI   ScienceOn
35 Acinas, S.G., R. Sarma-Rupavtarm, V. Klepac-Ceraj, and M.F. Polz. 2005. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl. Environ. Microbiol. 71:8966-8969.   DOI
36 Acosta-Martínez, V., S. Dowd, Y. Sun, and V. Allen. 2008. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol. Biochem. 40:2762-2770.   DOI
37 Acosta-Martínez, V., S.E. Dowd, C.W. Bell, R. Lascano, J.D. Booker, T.M. Zobeck, and D.R. Upchurch. 2010a. Microbial community composition as affected by dryland cropping systems and tillage in a semiarid sandy soil. Diversity. 2:910-931.   DOI
38 Hamp, T.J., W.J. Jones, and A.A. Fodor. 2009. Effects of experimental choices and analysis noise on surveys of the "rare biosphere". Appl. Environ. Microbiol. 75:3263- 3270.   DOI
39 Gilles, A., E. Meglecz, N. Pech, S. Ferreira, T. Malausa, and J.F. Martin. 2011. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics. 12.
40 Haas, B.J., D. Gevers, A.M. Earl, M. Feldgarden, D.V. Ward, G. Giannoukos, D. Ciulla, D. Tabbaa, S.K. Highlander, E. Sodergren, B. Methe, T.Z. DeSantis, T.H.M. Consortium, J.F. Petrosino, R. Knight, and B.W. Birren. 2011. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21:494-504.   DOI
41 Hongoh, Y., H. Yuzawa, M. Ohkuma, and T. Kudo. 2003. Evaluation of primers and PCR conditions for the analysis of 16S rRNA genes from a natural environment. FEMS Microbiol. Lett. 221:299-304.   DOI
42 Huber, T., G. Faulkner, and P. Hugenholtz. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics. 20:2317-2319.   DOI   ScienceOn
43 Huse, S.M., J.A. Huber, H.G. Morrison, M.L. Sogin, and D.M. Welch. 2007. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8:R143.   DOI
44 Huse, S.M., L. Dethlefsen, J.A. Huber, D.M. Welch, D.A. Relman, and M.L. Sogin. 2008. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genetics. 4.
45 Huse, S.M., D.M. Welch, H.G. Morrison, and M.L. Sogin. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ. Microbiol. 12:1889-1898.   DOI
46 Ishii, K. and M. Fukui. 2001. Optimization of annealing temperature to reduce bias caused by a primer mismatch in multitemplate PCR. Appl. Environ. Microbiol. 67:3753-3755.   DOI   ScienceOn
47 Suzuki, M.T. and S.J. Giovannoni. 1996. Bias caused by template annealing in the amplification of mixtures of 16S rRNA genes by PCR. Appl. Environ. Microbiol. 62:625-630.
48 Sugiyama, A., J.M. Vivanco, S.S. Jayanty, and D.K. Manter. 2010. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms. Plant Dis. 94:1329-1335.   DOI
49 Sun, Y., Y. Cai, L. Liu, F. Yu, M.L. Farrell, W. McKendree, and W. Farmerie. 2009. ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences. Nucleic Acids Res. 37.
50 Sun, Y., Y. Cai, S.M. Huse, R. Knight, W.G. Farmerie, X. Wang, and V. Mai. 2012. A large-scale benchmark study of existing algorithms for taxonomy-independent microbial community analysis. Brief. Bioinform. 13:107-121.   DOI
51 Torsvik, V., R. Sorheim, and J. Goksoyr. 1996. Total bacterial diversity in soil and sediment communities - A review. J. Ind. Microbiol. 17:170-178.   DOI   ScienceOn
52 Torsvik, V. and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5:240-245.   DOI   ScienceOn
53 Tzeneva, V.A., J.F. Salles, N. Naumova, W.A. de Vos, P.J. Kuikman, J. Dolfing, and H. Smidt. 2009. Effect of soil sample preservation, compared to the effect of other environmental variables, on bacterial and eukaryotic diversity. Research in Microbiology. 160:89-98.   DOI
54 van der Heijden, M.G., R.D. Bardgett, and N.M. van Straalen. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296-310.   DOI
55 von Wintzingerode, F., U.B. Gobel, and E. Stackebrandt. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21:213-229.   DOI   ScienceOn
56 Kunin, V., A. Engelbrektson, H. Ochman, and P. Hugenholtz. 2010. Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12:118-123.   DOI
57 Klammer, S., C. Mondini, and H. Insam. 2005. Microbial community fingerprints of composts stored under different conditions. Annals of Microbiology. 55:299-305.
58 Knight, R., J.G. Caporaso, C.L. Lauber, W.A. Walters, D. Berg-Lyons, C.A. Lozupone, P.J. Turnbaugh, and N. Fierer. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108:4516-4522.   DOI
59 Kolton, M., Y.M. Harel, Z. Pasternak, E.R. Graber, Y. Elad, and E. Cytryn. 2011. Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl. Environ. Microbiol. 77:4924-4930.   DOI   ScienceOn
60 Lauber, C.L., M. Hamady, R. Knight, and N. Fierer. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 75:5111-5120.   DOI
61 Lauber, C.L., N. Zhou, J.I. Gordon, R. Knight, and N. Fierer. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307:80-86.   DOI   ScienceOn
62 Li, W. and A. Godzik. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 22:1658-1659.   DOI
63 Wu, G.D., J.D. Lewis, C. Hoffmann, Y.Y. Chen, R. Knight, K. Bittinger, J. Hwang, J. Chen, R. Berkowsky, L. Nessel, H.Z. Li, and F.D. Bushman. 2010a. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol. 10:206.   DOI
64 Wang, Q., G.M. Garrity, J.M. Tiedje, and J.R. Cole. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267.   DOI   ScienceOn
65 Watanabe, K., Y. Kodama, and S. Harayama. 2001. Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J. Microbiol. Meth. 44:253-262.   DOI
66 Wright, E.S., L.S. Yilmaz, and D.R. Noguera. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl. Environ. Microbiol. 78:717-725.   DOI
67 Wu, J.Y., X.T. Jiang, Y.X. Jiang, S.Y. Lu, F. Zou, and H.W. Zhou. 2010b. Effects of polymerase, template dilution and cycle number on PCR based 16 S rRNA diversity analysis using the deep sequencing method. BMC Microbiol. 10:255.   DOI
68 Yoo, K., J. Lee, and J. Park. 2009. A review on the current methods for extracting DNA from soil and sediment environmental samples. J. Soil Groundwater Env. 14:57-67.
69 Zhou, H.W., D.F. Li, N.F.Y. Tam, X.T. Jiang, H. Zhang, H.F. Sheng, J. Qin, X. Liu, and F. Zou. 2011. BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J. 5:741-749.   DOI