Browse > Article
http://dx.doi.org/10.1080/12298093.2021.1944461

Four Unrecorded Aspergillus Species from the Rhizosphere Soil in South Korea  

Lee, Jun Won (School of Biological Sciences and Institute of Microbiology, Seoul National University)
Kim, Sung Hyun (School of Biological Sciences and Institute of Microbiology, Seoul National University)
You, Young-Hyun (Microorganism Resources Division, National Institute of Biological Resources)
Lim, Young Woon (School of Biological Sciences and Institute of Microbiology, Seoul National University)
Park, Myung Soo (School of Biological Sciences and Institute of Microbiology, Seoul National University)
Publication Information
Mycobiology / v.49, no.4, 2021 , pp. 346-354 More about this Journal
Abstract
The genus Aspergillus is commonly isolated from various marine and terrestrial environments; however, only a few species have been studied in rhizosphere soil. As part of the Korean indigenous fungal excavation project, we investigated fungal diversity from rhizosphere soil, focusing on Aspergillus species. A total of 13 strains were isolated from the rhizosphere soil of three different plants. Based on phylogenetic analysis of β-tubulin and calmodulin and morphological characteristics, we identified five Aspergillus species. A. calidoustus and A. pseudodeflectus were commonly isolated from the rhizosphere soil. Four species were confirmed as unrecorded species in Korea: A. calidoustus, A. dimorphicus, A. germanicus, and A. pseudodeflecuts. The detailed morphological descriptions of these unrecorded species are provided.
Keywords
BenA; CaM; morphology; new records; phylogeny;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee S, Park MS, Lim YW. Diversity of marine-derived Aspergillus from tidal mudflats and sea sand in Korea. Mycobiology. 2016;44(4):237-247.   DOI
2 Coats VC, Rumpho ME. The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front Microbiol. 2014;5:368.
3 Ehrmann J, Ritz K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil. 2014;376(1-2):1-29.   DOI
4 Wijeratne EK, Turbyville TJ, Zhang Z, et al. Cytotoxic constituents of Aspergillus terreus from the rhizosphere of Opuntia versicolor of the Sonoran Desert. J Nat Prod. 2003;66(12): 1567-1573.   DOI
5 Jain R, Saxena J, Sharma V. Solubilization of inorganic phosphates by Aspergillus awamori S19 isolated from rhizosphere soil of a semi-arid region. Ann Microbiol. 2012;62(2):725-735.   DOI
6 Glass NL, Donaldson GC. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61(4):1323-1330.   DOI
7 Hong SB, Go SJ, Shin HD, et al. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia. 2005;97(6):1316-1329.   DOI
8 Peterson SW, Vega FE, Posada F, et al. Penicillium coffeae, a new endophytic species isolated from a coffee plant and its phylogenetic relationship to P. fellutanum, P. thiersii and P. brocae based on parsimony analysis of multilocus DNA sequences. Mycologia. 2005;97(3):659-666.   DOI
9 He W, Xu Y, Fu P, et al. Cytotoxic indolyl diketopiperazines from the Aspergillus sp. GZWMJZ-258, endophytic with the medicinal and edible plant Garcinia multiflora. J Agric Food Chem. 2019; 67(38):10660-10666.   DOI
10 Islam S, Akanda AM, Sultana F, et al. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Arch Phytopathol. 2014;47(10):1231-1238.   DOI
11 Orfali R, Perveen S. Secondary metabolites from the Aspergillus sp. in the rhizosphere soil of Phoenix dactylifera (Palm tree). BMC Chem. 2019; 13(1):1-6.   DOI
12 Tavakol Noorabadi M, Babaeizad V, Zare R, et al. Isolation, Molecular identification, and mycotoxin production of Aspergillus species isolated from the rhizosphere of sugarcane in the South of Iran. Toxins. 2020;12(2):122.   DOI
13 Rodrigues de Carvalho C, Vieira MDLA, Cantrell CL, et al. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus. Nat Prod Res. 2016; 30(4):478-481.   DOI
14 Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats. J Exp Mar Biol Ecol. 2004;311(1):1-9.   DOI
15 Planchot V, Colonna P, Gallant DJ, et al. Extensive degradation of native starch granules by alpha-amylase from Aspergillus fumigatus. J Cereal Sci. 1995;21(2):163-171.   DOI
16 Hrmova M, Biely P, VrsAnska M. Cellulose-and xylan-degrading enzymes of Aspergillus terreus and Aspergillus niger. Enzyme Microb Technol. 1989; 11(9):610-616.   DOI
17 de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev. 2001;65(4):497-522.   DOI
18 Kim JD. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology. 2003;31(3):157-161.   DOI
19 Pandya ND, Desai PV, Jadhav HP, et al. Plant growth promoting potential of Aspergillus sp. NPF7, isolated from wheat rhizosphere in South Gujarat, India. Environ Sustain. 2018;1(3):245-252.   DOI
20 Houbraken J, Due M, Varga J, et al. Polyphasic taxonomy of Aspergillus section Usti. Stud Mycol. 2007;59:107-128.   DOI
21 Tuthill DE, Christensen M. Aspergillus sepultus, a new species in the Aspergillus ochraceus group. Mycologia. 1986;78(3):475-477.   DOI
22 Xu R, Xu GM, Li XM, et al. Characterization of a newly isolated marine fungus Aspergillus dimorphicus for optimized production of the anti-tumor agent wentilactones. Mar Drugs. 2015;13(11): 7040-7054.   DOI
23 Wu N, Li Z, Wu F, et al. Microenvironment and microbial community in the rhizosphere of dioecious Populus cathayana at Chaka Salt Lake. J Soils Sediments. 2019;19(6):2740-2751.   DOI
24 Balajee SA, Houbraken J, Verweij PE, et al. Aspergillus species identification in the clinical setting. Stud Mycol. 2007;59:39-46.   DOI
25 Park MS, Lee JW, Kim SH, et al. Penicillium from rhizosphere soil in terrestrial and coastal environments in South Korea. Mycobiology. 2020;48(6): 431-442.   DOI
26 Samson RA, Varga J, Meijer M, et al. New taxa in Aspergillus section Usti. Stud Mycol. 2011;69(1): 81-97.   DOI
27 Rodarte MP, Dias DR, Vilela DM, et al. Proteolytic activities of bacteria, yeasts and filamentous fungi isolated from coffee fruit (Coffea arabica L.). Acta Sci Agron. 2011;33(3):457-464.
28 Yoo SJ, Shin DJ, Won HY, et al. Aspergillus terreus JF27 promotes the growth of tomato plants and induces resistance against Pseudomonas syringae pv. tomato. Mycobiology. 2018;46(2):147-153.   DOI
29 Hong SB, Lee M, Kim DH, et al. Aspergillus cibarius sp. nov., from traditional meju in Korea. J Microbiol. 2012;50(4):712-714.   DOI
30 Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. In: Gelvin S, Schilperoort R, editors. Plant molecular biology manual. Dordrecht: Kluwer Academic; 1994.
31 Kim HJ, Kim JS, Cheon KH, et al. Species list of Aspergillus, Penicillium and Talaromyces in Korea, Based on one fungus one name system. Kor J Mycol. 2016;44(4):207-219.   DOI
32 Nguyen TT, Pangging M, Bangash NK, et al. Five new records of the family Aspergillaceae in Korea, Aspergillus europaeus, A. pragensis, A. tennesseensis, Penicillium fluviserpens, and P. scabrosum. Mycobiology. 2020;48(2):81-94.   DOI
33 Kim DH, Kim SH, Kim YK, et al. Reidentification of Aspergillus spp. isolated from clinical specimens of patients suspected as pulmonary aspergillosis in Korea. Korean J Med Mycol. 2009;14(3):133-144.
34 Scheckermann C, Wagner F, Fischer L. Galactosylation of antibiotics using the β-galactosidase from Aspergillus oryzae. Enzyme Microb Technol. 1997;20(8):629-634.   DOI
35 Visagie CM, Hirooka Y, Tanney JB, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014;78:63-139.   DOI
36 Deshmukh SK, Prakash V, Ranjan N. Marine fungi: a source of potential anticancer compounds. Front Microbiol. 2017;8:2536.   DOI
37 Park MS, Lee S, Oh SY, et al. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island. J Microbiol. 2016; 54(10):646-654.   DOI
38 Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7): 1870-1874.   DOI
39 Slack GJ. Identification of secondary metabolites from some Eurotium species, Aspergillus insuetus and A. calidoustus from Canadian homes. Ottawa, Canada: Carleton University; 2008.
40 Pattnaik SS, Busi S. Rhizospheric fungi: diversity and potential biotechnological applications, in recent advancement in white biotechnology through fungi. In: Yadav A, Mishra S, Singh S, Gupta A, editors. Recent advancement in white biotechnology through fungi. Fungal biology. Cham, Switzerland: Springer; 2019. p. 63-84.
41 Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-780.   DOI
42 Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006; 22(21):2688-2690.   DOI
43 Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES science gateway for inference of large phylogenetic trees. Paper presented at: SC10 workshop on gateway computing environments (GCE10), New Orleans, LA; 2010. p. 1-8.
44 Kornerup A, Wanscher JH. Methuen handbook of colour. 3rd ed. London: Methuen; 1978.
45 Varga J, Houbraken J, Van Der Lee HA, et al. Aspergillus calidoustus sp. nov., causative agent of human infections previously assigned to Aspergillus ustus. Eukaryot Cell. 2008;7(4):630-638.   DOI
46 Peterson SW. Phylogenetic analysis of Aspergillus sections Cremei and Wentii, based on ribosomal DNA sequences. Mycol Res. 1995;99(11): 1349-1355.   DOI
47 Houbraken J, Kocsube S, Visagie CM, et al. Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): an overview of families, genera, subgenera, sections, series and species. Stud Mycol. 2020;95:5-169.   DOI
48 Yang L, Lubeck M, Lubeck PS. Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev. 2017;31(1):33-49.   DOI
49 Geiser DM, Klich MA, Frisvad JC, et al. The current status of species recognition and identification in Aspergillus. Stud Mycol. 2007;59:1-10.   DOI
50 Samson RA, Visagie CM, Houbraken J, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014;78:141-173.   DOI
51 Oh JY, Mannaa M, Han GD, et al. First report of Aspergillus awamori as a fungal pathogen of garlic (Allium sativum L.). Crop Prot. 2016;85:65-70.   DOI
52 Kim KM, Lim J, Lee JJ, et al. Characterization of Aspergillus sojae isolated from meju, Korean traditional fermented soybean brick. J Microbiol Biotechnol. 2017;27(2):251-261.   DOI
53 National List of Species of Korea. 2019. National Institute of Biological Resources. [Internet] [cited 2021 Mar 5]. Available from: http://kbr.go.kr.
54 Hong SB, Kim DH, Park IC, et al. Isolation and identification of Aspergillus section Fumigati strains from arable soil in Korea. Mycobiology. 2010;38(1):1-6.   DOI
55 Mehrotra B, Prasad R. Aspergillus dimorphicus and Emericella cleisto-minuta spp. nov. from Indian soils. Trans Brit Mycol Soc. 1969;52(2):331-336.   DOI
56 Novakova A, Hubka V, Saiz-Jimenez C, et al. Aspergillus baeticus sp. nov. and Aspergillus thesauricus sp. nov., two species in section Usti from Spanish caves. Int J Syst Evol Microbiol. 2012; 62(Pt 11):2778-2785.   DOI
57 Romero SM, Comerio RM, Barrera VA, et al. Aspergillus fuscicans (Aspergillaceae, Eurotiales), a new species in section Usti from Argentinean semi-arid soil. Phytotaxa. 2018;343(1):67-74.   DOI
58 Bidochka MJ, Menzies FV, Kamp AM. Genetic groups of the insect-pathogenic fungus Beauveria bassiana are associated with habitat and thermal growth preferences. Arch Microbiol. 2002;178(6): 531-537.   DOI
59 Visagie CM, Houbraken J. Updating the taxonomy of Aspergillus in South Africa. Stud Mycol. 2020; 95:253-292.   DOI
60 Noor SO, Al-Zahrani DA, Hussein RM, et al. Assessment of fungal diversity in soil rhizosphere associated with Rhazya stricta and some desert plants using metagenomics. Arch Microbiol. 2020; 202(9):1-9.   DOI
61 Hong SB, Shin HD, Hong J, et al. New taxa of Neosartorya and Aspergillus in Aspergillus section Fumigati. Antonie Van Leeuwenhoek. 2008;93(1-2):87-98.   DOI
62 Yang S, Choi SJ, Kwak J, et al. Aspergillus oryzae strains isolated from traditional Korean nuruk: fermentation properties and influence on rice wine quality. Food Sci Biotechnol. 2013;22(2):425-432.   DOI
63 Samson RA, Mouchacca J. Additional notes on species of Aspergillus, Eurotium and Emericella from Egyptian desert soil. Antonie Van Leeuwenhoek. 1975;41(3):343-351.   DOI
64 Ogawa A, Murakami C, Kamisuki S, et al. Pseudodeflectusin, a novel isochroman derivative from Aspergillus pseudodeflectus a parasite of the sea weed, Sargassum fusiform, as a selective human cancer cytotoxin. Bioorg Med Chem Lett. 2004; 14(13):3539-3543.   DOI
65 dos Reis Celestino J, de Carvalho LE, da Paz Lima M, et al. Bioprospecting of Amazon soil fungi with the potential for pigment production. Process Biochem. 2014;49(4):569-575.   DOI
66 Kim HR, Kim JH, Bai DH, et al. Identification and characterization of useful fungi with α-amylase activity from the Korean traditional nuruk. Mycobiology. 2011;39(4):278-282.   DOI