• Title/Summary/Keyword: Soil heat treatment

Search Result 81, Processing Time 0.028 seconds

Isolation and Biocontrol Potential of Bacillus amyloliquefaciens Y1 against Fungal Plant Pathogens

  • Jamal, Qaiser;Lee, Yong Seong;Jeon, Hyeon Deok;Park, Yun Suk;Kim, Kil Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.485-491
    • /
    • 2015
  • This study was performed to investigate thermophilic bacteria from soil having broad antifungal spectrum against Rhizoctonia solani, Colletotrichum gloeosporioides, Phytophthora capsici, Fusarium oxysporum f.sp. lycopersici, and Botrytis cinerea. One isolate selected could resist heat shock of $60^{\circ}C$ for one hour, and had broad antifungal activity in dual culture assay against all tested fungal pathogens and was identified as Bacillus amyloliquefaciens Y1 using 16S rRNA gene sequence. Further investigation for antifungal activity of bacterial culture filtrate (BCF) and butanol crude extract (BCE) of various concentrations showed broad spectrum antifungal activity and fungal growth inhibition significantly increased with increasing concentration with highest growth inhibition of 100% against R. solani with 50% BCF and 11 mm of zone of inhibition against R. solani with 4 mg BCE concentration. Treatment of butanol crude extract resulted in deformation, lysis or degradation of C. gloeosporioides and P. capsici hyphae. Furthermore, B. amyloliquefaciens Y1 produced volatile compounds inhibiting growth of R. solani (70%), C. gloeosporioides (65%) and P. capsici (65-70%) when tested in volatile assay. The results from the study suggest that B. amyloliquefaciens Y1 could be a biocontrol candidate to control fungal diseases in crops.

Microfungal flora of Tricholoma matsutake producing and nonproducing sites in the forest of Pinus densiflora (적송 (Pinus densiflora) 림내 송이(Tricholoma matsutake) 발생지와 미발생지의 토양 균류의 수직 분포)

  • Song, Hyun-Soon;Min, Kyung-Hee
    • The Korean Journal of Mycology
    • /
    • v.19 no.2
    • /
    • pp.109-119
    • /
    • 1991
  • The vertical distribution of the fungal population for the soil samples from two sites of producing and nonproducing of Tricholoma matsutake, song-yi mushroom, were examined at Yang­yang and Myung-joo, Gangweon province. By the dilution plate method, a total number of propagu­les of fungi per gram of soil was observed to be low at the song-yi producing sites but high at the song-yi nonproducing sites under the communities of Pinus densiflora. The tendency of the number of fungal propagules were decreased with the increasing vertical depth. In the incuhation method at $42^{\circ}C$, six genera and nineteen species of the fungi were isolated from two sites; Aspergillus fumigatus, Acremonium sp., Talaromyces stipitatus, Penicillium lilacinum, P. oxalicum and Westerdykella multispora. The most dominant species by this method was A. fumigatus. From heat treatment method at $70^{\circ}C$, seven genera and nineteen species were isolated; Aspergillus fumigatus, Alternaria alternata, Neurospora sitophila and Mucor sp.. In the ethanol treatment method, one genera and one species was isolated Mortierella sp.. From the three isolation methods, it was found that the total number of the soil fungi and the frequency of species appeared were the highest at the soil of upper layer whereas the lowest at the soils of lower layer in its vertical distribution.

  • PDF

Age comparisons of coastal sand dune stratum in Chollipo, Korea by altering preheat and cut-heat, and grain size distributions by OSL dating (예열 및 cut-heat 온도와 입자의 크기에 따른 천리포 해안사구 퇴적층의 OSL 연대측정 비교)

  • Bang, Jun-Hwan;Kim, Ki-Dong;Eum, Chul-Hun
    • Analytical Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.51-56
    • /
    • 2009
  • The samples from coastal sand dune stratum in Chollipo were dated by Optically Stimulated Luminescence (OSL) with modified Single Aliquots Regeneration (SAR) method. It is possible to choose the OSL signals by thermal treatments such as preheat and cut-heat in SAR procedure. Preheat and cut-heat of $260^{\circ}C$ for 10 sec $-220^{\circ}C$ for 0 sec, and $270^{\circ}C$ for 10 sec $-270^{\circ}C$ for 10 sec were applied for estimation of equivalent dose of the samples. The OSL signals from different thermal treatment were used for OSL dating. Equivalent dose were estimated with 4 fractionated grain distributions with $75{\mu}m$, $150{\mu}m$ and $200{\mu}m$ sieves with above heating treatments. Consequently, the estimated dose were differently valued in sample sizes and applied heating treatments, different stratum ages were calculated. The ages from radiocarbon dating were compared with the OSL ages. The ages varying with grain sizes produce that the site sampled were formed with mixed soil sources.

Effect of Temperature and Water Content of Soil on Creeping Bentgrass(Agrostis palustris Huds) Growth (토양의 온도와 수분이 크리핑 벤트그래스(Agrostis palustris Huds) 생육에 미치는 영향)

  • Lim, Seung-Hyun;Jeong, Jun-Ki;Kim, Ki-Dong;Joo, Young-Kyoo
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2009
  • The high temperature and water content in soil profile probably affect the physiological disorder especially on cool-season turfgrasses in warm and humid weather of Korean summer. The purpose of this research was to analyze the effect of soil temperature and water content on the growth and stress response of creeping bentgrass(Agrostis palustris Huds.) under a humid and warm temperature. USGA(United State of Golf Association) green profile in laboratory test, Daily temperature changes were tested under a dried sand, 70% water content of field capacity, and saturated condition at $34^{\circ}C$ of the USGA green in lab. In this test, the dried sand reached to $80^{\circ}C$, however, the surface temperature decrease of $10^{\circ}C$ on the saturated condition. In the thermal properties test in field, thermal conductivity, thermal diffusivity, and soil temperature were increased followed by irrigation practise. In the water-deficient condition, the highest soil temperature was reached temporally right after irrigation, however, the excessive soil water content higher than field water holding capacity showed the highest soil temperature after a while. This result indicated that a heat damage to root system was caused from the thermal conductivity of a high surface soil temperature. The excessive irrigation when a high turf surface temperature should occur a negative result on tufgrass growth, moreover, it would be fatal to root growth of creeping bentgrass, especially when associated with a poor draining system on USGA sand green. Overall, this study shows that high soil temperature with water-excessive condition negatively affects on cool-season grass during the summer season, suggesting that excessive irrigation, over 70% field capacity of soil condition, does not help to reduce soil temperature for summer season in Korea. In the study that cool-season grass were treated with different water content of soil, The soil had higher temperature and more water holding capacity when treatment rate of soil conditioner was increased. The best growth at the normal water condition and the worst state of growth at thee water-excessive condition were observed.

Growth Inhibition Profile of an Antibacterial Entity from Paenibacillus DY1 Isolated from Korean Soil against Multidrug Resistant Enteric Bacterial Strains and Its Characterization

  • Shin, Eun-Seok;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Biomedical Science Letters
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • Due to wide abuse of antibiotics both in human and livestock use, the advent and spread of multidrug resistant (MDR) pathogens becomes a serious health problem all over the world. Since the development of new antibiotics is at a standstill in pharmaceutical industry, the choice of therapeutic antibiotics is getting narrower. In this study, in an effort to search new antibiotics, the antimicrobial activity of Paenibacillus DY1 isolated from Korean soil was characterized on its growth inhibition spectrum against various health threatening MDR strains, with its stability and chemical structure. Extracellular culture filtrate of Paenibacillus DY1 effectively inhibits the growth of all the tested MDR enteropathogenic Eshcherichia coli, enterohemolytic E. coli, and enterotoxigenic E. coli strains, at a similar level to that on the nonresistant control E. coli strains. It showed significant growth inhibition effect against the causative agents of class one legal communicable disease, MDR Salmonella typhi, MDR Salmonella paratyphi A, food poisoning bacteria, MDR Salmonella typhimurium, and other MDR Salmonella spp. The growth of all of 10 different MDR Shigella spp. strains and 6 different Vibrio spp. strains tested was also inhibited. The antimicrobial activity of Paenibacillus DY1 was well preserved after heat treatment, and was also stable in both alkaline and acidic environment. The antimicrobial activity was partially purified with Diaion HP20 column and TLC. By NMR study, the putative structure of the activity was postulated as an alkane having hydroxyl groups.

  • PDF

Acquisition of Thermotolerance in Transgenic Orchardgrass Plants with DgHSP17.2 Gene

  • Kim, Ki-Yong;Jang, Yo-Soon;Cha, Joon-Yung;Son, Daeyoung;Choi, Gi Jun;Seo, Sung;Lee, Sang Jin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.657-662
    • /
    • 2008
  • To develop transgenic orchardgrass (Dactylis glomerata L.) resistant to high temperature, the recombinant DgHSP17.2 gene was introduced into orchardgrass plants using the Agrobacterium-mediated transformation method and expressed constitutively under the control of the CaMV 35S promoter. The results of genomic DNA PCR and Southern analysis showed a DNA band and hybridization signal on agarose gel and X-ray film in transgenic orchardgrass plants harboring the recombinant DgHSP17.2 gene, but a DNA band and hybridization signal were not observed in the wild type and empty vector control plants. The same result was also obtained in RT-PCR and Southern blot analysis, and these transgenic orchardgrass plants did not show any morphological aberration both in the culture bottle and soil mixture. When leaf discs cut from transgenic orchardgrass plants with recombinant DgHsp17.2 gene were exposed to lethal temperature (heat treatment at $60^{\circ}C$ for 50 min), 60-80% of the leaf discs showed only damage symptoms, but non-transgenic leaf discs showed a lethal condition. These results indicate that the DgHsp17.2 gene may act as a protector from heat stress in plants.

Problem and Optimum Operational Strategy of Multipurpose Reservoir in Korea (우리나라 다목적 Dam 운영의 문제점과 개선방안)

  • 심순보
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF

Isolation and Production of Antibiotic Substance from Streptomyces sp. S-1110 Antagonistic to Multiple Apple Mold Diseases (사과 곰팡이병에 길항하는 Streptomyces sp. S-1110의 분리 및 길항 물질의 생산)

  • Shin, Jin-Ho;Kim, Eun-Jung;Park, Sun-Ji;Rhee, In-Koo;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.289-294
    • /
    • 2009
  • Concerning about the negative impact of chemical pesticides on human health and the environment has been leading to dramatic increase of research in natural product-based pesticides. An antagonistic bacterium Streptomyces sp. S-1110 was isolated from apple farm soil. The culture filtrate of the strain showed growth inhibition effects to apple pathogenic fungi, Botryosphaeria dothidea, Colletotrichum gloeosporioides and Rhizoctonia solani. The unidentified antibiotic substances from the strain kept antagonistic activity either after heat treatment at $121^{\circ}C$ for 1 h or pH treatment at range of pH 3 - pH 12 for 24 h. The substances also prevented apple fruit from spoiling by inoculated two pathogenic molds, B. dothidea and C. gloeosporioides. These results suggested that the isolated strain would be useful as a biocontrol agent to control apple spoiling occurred from mold.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.

Systemic Induction of the Small Antibacterial Compound in the Leaf Exudate During Benzothiadiazole-elicited Systemic Acquired Resistance in Pepper

  • Lee, Boyoung;Park, Yong-Soon;Yi, Hwe-Su;Ryu, Choong-Min
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.350-355
    • /
    • 2013
  • Plants protect themselves from diverse potential pathogens by induction of the immune systems such as systemic acquired resistance (SAR). Most bacterial plant pathogens thrive in the intercellular space (apoplast) of plant tissues and cause symptoms. The apoplastic leaf exudate (LE) is believed to contain nutrients to provide food resource for phytopathogenic bacteria to survive and to bring harmful phytocompounds to protect plants against bacterial pathogens. In this study, we employed the pepper-Xanthomonas axonopodis system to assess whether apoplastic fluid from LE in pepper affects the fitness of X. axonopodis during the induction of SAR. The LE was extracted from pepper leaves 7 days after soil drench-application of a chemical trigger, benzothiadiazole (BTH). Elicitation of plant immunity was confirmed by significant up-regulation of four genes, CaPR1, CaPR4, CaPR9, and CaCHI2, by BTH treatment. Bacterial fitness was evaluated by measuring growth rate during cultivation with LE from BTH- or water-treated leaves. LE from BTH-treatment significantly inhibited bacterial growth when compared to that from the water-treated control. The antibacterial activity of LE from BTH-treated samples was not affected by heating at $100^{\circ}C$ for 30 min. Although the antibacterial molecules were not precisely identified, the data suggest that small (less than 5 kDa), heat-stable compound(s) that are present in BTH-induced LE directly attenuate bacterial growth during the elicitation of plant immunity.