References
- Cashikar, A. G., M. L Duennwald and S. L. Lindquist. 2005. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280:23869-23875. https://doi.org/10.1074/jbc.M502854200
- Chang, Z., T. P. Primm, J. Jakana, I. H. Lee, I. Serysheva, W. Chiu, H. F. Gilbert and F. A. Quiocho. 1996. Mycobacterium tuberculosis 16-kDa antigen (HSP16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271:7218-7223. https://doi.org/10.1074/jbc.271.12.7218
-
de Jong, W. W., J. A. Leunissen and C. E. Vooter. 1993. Evolution of the
$\alpha$ -crystallin/small heat-shock protein family. Mol. Biol. Evol. 10:103-126. - Feder, M. E. and G. E. Hofmann. 1999. Heat-shock proteins, molecular chaperones, and the stress response evolutionary and ecological physiology. Annual Review of Physiology 61:243-282. https://doi.org/10.1146/annurev.physiol.61.1.243
- Fink, A. L. 1999. Chaperone-mediated protein folding. Physiol. Rev. 425:425-449.
- Haslbeck, M., A. Miess, T. Stromer, S. Walter and J. Buchner. 2005. Disassembling protein aggregates in the yeast cytosol: the cooperation of Hsp26 with Ssa1 and Hsp104. J. Biol. Chem. 280:23861-23868. https://doi.org/10.1074/jbc.M502697200
- Haslbeck, M., S. Walke, T. Stromer, M. Ehrnsperger, H. E. White, S. Chen, H. R. Saibil and J. Buchner. 1999. Hsp26: a temperature-regulated chaperone. EMBO J. 18:6744-6751. https://doi.org/10.1093/emboj/18.23.6744
- Holsters, M., O. D. Wael, A. Depicker, E. Messens, M. V. Montagu and J. Schell. 1978. Transfection and transformation of A.tumefaciens. Mol. Gel. Genet. 163:181-187. https://doi.org/10.1007/BF00267408
- Horwich, A. L. 2002. Protein aggregation in disease: a role for folding intermediates forming specific multimeric interactions. J. Clin. Invest. 110:1221-1232. https://doi.org/10.1172/JCI0216781
- Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89:10449-10453. https://doi.org/10.1073/pnas.89.21.10449
- Jakob, U., M. Gaestel, K. Engel and J. Buchner. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268: 1517-1520.
- Jinn, T. L., Y. M. Chen and C. Y. Lin. 1995. Characterization and physiological function of class I low-molecular-mass, heatshock protein complex in soybean. Plant Physiol. 108:693-701. https://doi.org/10.1104/pp.108.2.693
- Kim, K. Y., M. S. Chung and J. Jo. 1997. Acquisition of thermotolerance in the transgenic plants with BcHSP17.6 cDNA. J. Korean Grassl. Sci. 17(4):379-386.
- Kim, K. Y., Y. S. Jang, G. J. Choi, Y. W. Rim, G. J. Park, B. H. Lee, D. Son and J. Jo. 2002. Molecular cloning of a cDNA encoding 17.6-kilodalton heat shock protein from Brassica campestris and its expression in E. coli. Korean J. Genetics 24(4):383-388.
- Kim, K. Y., Y. S. Jang, B. H. Lee and J. Jo. 1998a. Expression and accumulation of LMW HSPs under various heat shock conditions. J. Korean Grassl. Sci. 18(4):303-310.
- Kim, K. Y., Y. W. Rim, K. J. Choi, J. S. Shin, J. G. Kim and J. Jo. 1998b. Rapid regeneration of plants on N6 medium from orchardgrass (Dactylis glomerata L.) calli. J. Korean Grassl. Sci. 18(3):267-272.
- Lee, G. J. and E. Vierling. 2000. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122:189-197. https://doi.org/10.1104/pp.122.1.189
- Lee, H., E. K. Bae, K. Y. Kim, S. Won, M. Chung and J. Jo. 2001. Transformation of orchardgrass (Dactylis glomerata L.) with glutathione reductase gene. J. Korean Grassl. Sci. 21(1):21-26.
- Lin, C. Y., J. K. Roberts and J. L. Key. 1984. Acquisition of thermotolerance in soybean seedlings. Plant Physiol. 74:152-160. https://doi.org/10.1104/pp.74.1.152
- Lindquist, S. and G. Kim. 1996. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA 93:5301-5306. https://doi.org/10.1073/pnas.93.11.5301
- McGookin, R. 1984. RNA extraction by the guanidine thiocyanate procedure (Ed. J. M. Walker), Methods in Molecular Biology, Vol. 2, Humana Press, New Jersey, pp. 113-116.
- Mogk, A., E. Deuerling, S. Vorderwulbecke, E. Vierling and B. Bukau. 2003a. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50:585-595. https://doi.org/10.1046/j.1365-2958.2003.03710.x
- Mogk, A., C. Schlieker, K. L. Friedrich, H. Schonfeld, E. Vierling and B. Bukau. 2003b. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278:31033-31042. https://doi.org/10.1074/jbc.M303587200
- Murray, M. G. and W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8:4321-4325. https://doi.org/10.1093/nar/8.19.4321
- Narberhaus, F. 2002. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66:64-93. https://doi.org/10.1128/MMBR.66.1.64-93.2002
- Lee, S. H., D. G. Lee, H. S. Woo and B. H. Lee. 2004. Development of tall fescue plants from mature seed-derived callus via Agrobacterium-mediated transformation. Asian-Aust. J. Anim. Sci. 17:1390-1394. https://doi.org/10.5713/ajas.2004.1390
- Thomas, J. G. and F. Baneyx. 1998. Roles of the Escherichia coli small heat shock proteins IbpA and IbpB in thermal stress management: comparison with ClpA, ClpB, and HtpG in vivo. J. Bacteriol. 180:5165-5172.
- Thomas, X., L. Campos, Q. H. Le and D. Guyotat. 2005. Heat shock proteins and acute leukemias. Hematology 10(3):225-235. https://doi.org/10.1080/10245330500093120
- van Montfort, R., C. Slingsby and E. Vierling. 2002. Structure and function of the small heat shock protein/alpha-crystallin family of molecular chaperones. Adv. Protein Chem. 59:105-156.
- Weibezahn, J., P. Tessarz, C. Schlieker, R. Zahn, Z. Maglica, S. Lee, H. Zentgraf, E. U. Weber-Ban, D. A. Dougan, F. T. F. Tsai, A. Mogk and B. Bukau. 2004. Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell 119:653-665. https://doi.org/10.1016/j.cell.2004.11.027
Cited by
- Evolution of heat-shock protein expression underlying adaptive responses to environmental stress vol.27, pp.15, 2018, https://doi.org/10.1111/mec.14769