References
- Kim H. Y. (2000). The Perspectives of Apple Industry for 21C in Korea, KOR. J. Hort. Sci. & Technol. 18(2), pp.140
- Kim, E., Kim, H. H., Lee, H. Y., and Uhm, J. Y. (1997). Reduction of Inoculum Density in Apple White Rot by the Coating of Diseased Stems with Polymers, Plant. Pathlol. J. 13(5), 349-357
- Lee, D. H., Kim, D. A. Lee, S. W., Choi, K. H., and Uhm, J. Y. (2004). Resent Status of Apple Diseases in Major Fruit Producing Areas of Korea('92~'00), KOR. J. Hort. Sci. & Technol. 22(sI), pp.131
- Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S.J., and Chung, H. S. (1993) Detailed Survey of Apple and Pear Diseases in Major Fruit Producing Areas of Korea(´88 ~´92), Plant. Pathlol. J. 9(1), 47-51
- Kim, Y. K., Lee, S. D., Ryu, J. G., and Ryu, J. D. (2003) Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens, Res. Plant Dis. 9(4), 229-236 https://doi.org/10.5423/RPD.2003.9.4.229
- Peighamy-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., and Behboudi, K. (2008) Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple, Commun. Agric. Appl. Biol. Sci. 73(2), 249-255
- Yu, T., Chen, J., Lu, H., and Zheng, X. (2009) Indole-3-Acetic Acid Improves Postharvest Biological Control of Blue Mold Rot of Apple by Cryptococcus laurentii, Phytopathol. 99(3), 258-264 https://doi.org/10.1094/PHYTO-99-3-0258
- El-Ghaouth, A., Smilanick, J. L., Wisniewski, M., and Wilson, C. L. (2000) Improved Control of Apple and Citrus Fruit Decay with a Combination of Candida saitoana and 2-Deoxy-D-Glucose, Plant Dis. 84(3), 249-253 https://doi.org/10.1094/PDIS.2000.84.3.249
- Janisiewicz, W. J., Tworkoski, T. J., and Kurtzman, C. P. (2001) Biocontrol Potential of Metchnikowia pulcherrima Strains Against Blue Mold of Apple, Phytopathol. 91(11), 1098-1108 https://doi.org/10.1094/PHYTO.2001.91.11.1098
- Ikeda, H., Kotaki, H., Tanaka, H., and Ōmura, S. (1988) Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob, Agents Chemother. 32, 282-284 https://doi.org/10.1128/AAC.32.2.282
- Skaar, I. and Stenwig, H. (1996) Malt-yeast extractsucrose agar, a suitable medium for enumeration and isolation of fungi from silage, Appl. Environ. Microbiol. 62(10), 3614-3619
- Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace N. R. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. U S A 82(20), 6955-6959 https://doi.org/10.1073/pnas.82.20.6955
- Iwasa, T., Higashide, E., and Shibata, M. (1971) Studies of validamycins, new antibiotics. 3. Bioassay methods for the determination of validamycin, J. Antibiot. 24(2),114-118 https://doi.org/10.7164/antibiotics.24.114
- Raaijmakers, J., Vlami, M., and de Souza, J. (2002) Antibiotic production by bacterial biocontrol agents, Antonie. van Leeuwenhoek 81(1), 537-547 https://doi.org/10.1023/A:1020501420831
- Dayan, F. E., Cantrell, C. L., and Duke, S. O. (2009) Natural products in crop protection, Bioorg. Med. Chem. 17(12), 4022-4034 https://doi.org/10.1016/j.bmc.2009.01.046
- Rifaat, H. M. and Kansoh, A. L. (2004) Streptomyces virginiae: Taxonomy, identification and biological activities, Arab J. Biotechnol. 8(1), 29-34
- Miyashiro, S., Ando, T., Hirayama, K., Kida, T., Shibai, H., Murai, A., Shiio, T., and Udaka S. (1983) New streptothricin-group antibiotics, AN-201 I and II. Screening, fermentation, isolation, structure and biological activity, J. Antibiot. 36(12), 1638-1643 https://doi.org/10.7164/antibiotics.36.1638
- Kunihiro, S. and Kaneda, M. (2003) Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698SY2, J. Antibiot. 56(1), 30-33 https://doi.org/10.7164/antibiotics.56.30
- Watve, M., Tickoo, R., Jog, M., and Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol. 176(5), 386-390 https://doi.org/10.1007/s002030100345