DOI QR코드

DOI QR Code

Isolation and Production of Antibiotic Substance from Streptomyces sp. S-1110 Antagonistic to Multiple Apple Mold Diseases

사과 곰팡이병에 길항하는 Streptomyces sp. S-1110의 분리 및 길항 물질의 생산

  • Shin, Jin-Ho (School of Applied Biosciences, Kyungpook National University) ;
  • Kim, Eun-Jung (School of Applied Biosciences, Kyungpook National University) ;
  • Park, Sun-Ji (School of Applied Biosciences, Kyungpook National University) ;
  • Rhee, In-Koo (School of Applied Biosciences, Kyungpook National University) ;
  • Shin, Jae-Ho (School of Applied Biosciences, Kyungpook National University)
  • 신진호 (경북대학교 응용생명과학부) ;
  • 김은정 (경북대학교 응용생명과학부) ;
  • 박선지 (경북대학교 응용생명과학부) ;
  • 이인구 (경북대학교 응용생명과학부) ;
  • 신재호 (경북대학교 응용생명과학부)
  • Published : 2009.09.30

Abstract

Concerning about the negative impact of chemical pesticides on human health and the environment has been leading to dramatic increase of research in natural product-based pesticides. An antagonistic bacterium Streptomyces sp. S-1110 was isolated from apple farm soil. The culture filtrate of the strain showed growth inhibition effects to apple pathogenic fungi, Botryosphaeria dothidea, Colletotrichum gloeosporioides and Rhizoctonia solani. The unidentified antibiotic substances from the strain kept antagonistic activity either after heat treatment at $121^{\circ}C$ for 1 h or pH treatment at range of pH 3 - pH 12 for 24 h. The substances also prevented apple fruit from spoiling by inoculated two pathogenic molds, B. dothidea and C. gloeosporioides. These results suggested that the isolated strain would be useful as a biocontrol agent to control apple spoiling occurred from mold.

사과 재배에 피해를 주고 있는 사과 겹무늬썩음병, 탄저병, 라이족토니아병을 복합적으로 방제하기 위한 기초연구로서 각 병원균에 대하여 우수한 길항력을 동시에 가지는 길항미생물을 선발하고 Streptomyces sp. S-1110으로 동정하였다. 분리된 길항미생물은 배양상등액으로 길항물질을 분비하였으며 우수한 열안정성과 pH 안정성을 가지는 특성이 있었으며 각 병원균에 대한 감수성이 조금씩 달라서 2 종 이상의 길항물질이 동시에 생산되어 길항작용을 하는 것으로 추정되었다. 또한 분리균이 생산하는 길항물질을 사과 과실에 직접접종된 사과 겹무늬썩음병과 탄저병의 방제를 위해 실험한 결과 높은 방제력을 보였다. 따라서 분리된 길항미생물은 사과 과수원 및 저장소에서 동시에 수종의 질병방제에 쓰일 수 있는 천연 복합방제제의 개발을 위한 기초 균주로의 가치가 높은 것으로 판단된다.

Keywords

References

  1. Kim H. Y. (2000). The Perspectives of Apple Industry for 21C in Korea, KOR. J. Hort. Sci. & Technol. 18(2), pp.140
  2. Kim, E., Kim, H. H., Lee, H. Y., and Uhm, J. Y. (1997). Reduction of Inoculum Density in Apple White Rot by the Coating of Diseased Stems with Polymers, Plant. Pathlol. J. 13(5), 349-357
  3. Lee, D. H., Kim, D. A. Lee, S. W., Choi, K. H., and Uhm, J. Y. (2004). Resent Status of Apple Diseases in Major Fruit Producing Areas of Korea('92~'00), KOR. J. Hort. Sci. & Technol. 22(sI), pp.131
  4. Lee, Y. H., Cho, W. D., Kim, W. K., Lee, E. J., Han, S.J., and Chung, H. S. (1993) Detailed Survey of Apple and Pear Diseases in Major Fruit Producing Areas of Korea(´88 ~´92), Plant. Pathlol. J. 9(1), 47-51
  5. Kim, Y. K., Lee, S. D., Ryu, J. G., and Ryu, J. D. (2003) Biological Control of Blue Mold of Apples by Bacillus spp. and Serratia marcescens, Res. Plant Dis. 9(4), 229-236 https://doi.org/10.5423/RPD.2003.9.4.229
  6. Peighamy-Ashnaei, S., Sharifi-Tehrani, A., Ahmadzadeh, M., and Behboudi, K. (2008) Interaction of media on production and biocontrol efficacy of Pseudomonas fluorescens and Bacillus subtilis against grey mould of apple, Commun. Agric. Appl. Biol. Sci. 73(2), 249-255
  7. Yu, T., Chen, J., Lu, H., and Zheng, X. (2009) Indole-3-Acetic Acid Improves Postharvest Biological Control of Blue Mold Rot of Apple by Cryptococcus laurentii, Phytopathol. 99(3), 258-264 https://doi.org/10.1094/PHYTO-99-3-0258
  8. El-Ghaouth, A., Smilanick, J. L., Wisniewski, M., and Wilson, C. L. (2000) Improved Control of Apple and Citrus Fruit Decay with a Combination of Candida saitoana and 2-Deoxy-D-Glucose, Plant Dis. 84(3), 249-253 https://doi.org/10.1094/PDIS.2000.84.3.249
  9. Janisiewicz, W. J., Tworkoski, T. J., and Kurtzman, C. P. (2001) Biocontrol Potential of Metchnikowia pulcherrima Strains Against Blue Mold of Apple, Phytopathol. 91(11), 1098-1108 https://doi.org/10.1094/PHYTO.2001.91.11.1098
  10. Ikeda, H., Kotaki, H., Tanaka, H., and Ōmura, S. (1988) Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrob, Agents Chemother. 32, 282-284 https://doi.org/10.1128/AAC.32.2.282
  11. Skaar, I. and Stenwig, H. (1996) Malt-yeast extractsucrose agar, a suitable medium for enumeration and isolation of fungi from silage, Appl. Environ. Microbiol. 62(10), 3614-3619
  12. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace N. R. (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses, Proc. Natl. Acad. Sci. U S A 82(20), 6955-6959 https://doi.org/10.1073/pnas.82.20.6955
  13. Iwasa, T., Higashide, E., and Shibata, M. (1971) Studies of validamycins, new antibiotics. 3. Bioassay methods for the determination of validamycin, J. Antibiot. 24(2),114-118 https://doi.org/10.7164/antibiotics.24.114
  14. Raaijmakers, J., Vlami, M., and de Souza, J. (2002) Antibiotic production by bacterial biocontrol agents, Antonie. van Leeuwenhoek 81(1), 537-547 https://doi.org/10.1023/A:1020501420831
  15. Dayan, F. E., Cantrell, C. L., and Duke, S. O. (2009) Natural products in crop protection, Bioorg. Med. Chem. 17(12), 4022-4034 https://doi.org/10.1016/j.bmc.2009.01.046
  16. Rifaat, H. M. and Kansoh, A. L. (2004) Streptomyces virginiae: Taxonomy, identification and biological activities, Arab J. Biotechnol. 8(1), 29-34
  17. Miyashiro, S., Ando, T., Hirayama, K., Kida, T., Shibai, H., Murai, A., Shiio, T., and Udaka S. (1983) New streptothricin-group antibiotics, AN-201 I and II. Screening, fermentation, isolation, structure and biological activity, J. Antibiot. 36(12), 1638-1643 https://doi.org/10.7164/antibiotics.36.1638
  18. Kunihiro, S. and Kaneda, M. (2003) Glomecidin, a novel antifungal cyclic tetrapeptide produced by Streptomyces lavendulae H698SY2, J. Antibiot. 56(1), 30-33 https://doi.org/10.7164/antibiotics.56.30
  19. Watve, M., Tickoo, R., Jog, M., and Bhole, B. (2001) How many antibiotics are produced by the genus Streptomyces?, Arch. Microbiol. 176(5), 386-390 https://doi.org/10.1007/s002030100345