References
- Brisset, M. N., Cesbron, S., Thomson, S. V. and Paulin, J. P. 2000. Acibenzolar-S-methyl induces the accumulation of defenserelated enzymes in apple and protects from fire blight. Eur. J. Plant Pathol. 106:529-536. https://doi.org/10.1023/A:1008728119087
- Chen, Z., Silva, H. and Klessig, D. F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886. https://doi.org/10.1126/science.8266079
- Davis, K. R. and Ausubel, F. M. 1989. Characterization of elicitor- induced defense responses in suspension-cultured cells of Arabidopsis. Mol. Plant-Microbe Interact. 2:363-368. https://doi.org/10.1094/MPMI-2-363
- Deverall, B. J. 1995. Plant protection using natural defence systems of plants. Adv. Plant Pathol. 11:211-228. https://doi.org/10.1016/S0736-4539(06)80013-9
- Dietrich, R., Ploss, K. and Heil, M. 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant Cell Environ. 28:211-222. https://doi.org/10.1111/j.1365-3040.2004.01265.x
- Epple, P., Apel, K. and Bohlmann, H. 1997. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509-520. https://doi.org/10.1105/tpc.9.4.509
- Friedrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J. 10:61-70. https://doi.org/10.1046/j.1365-313X.1996.10010061.x
- Gorlach, J., Volrath, S., Knauf-beiter, G., Henry, G., Beckhove, U., Kogel, K. H., Oosterndorp, M., Staub, T., Ward, E., Kessmann, H. and Ryals, J. 1996. Benzothiadiazole, a novel class of induces of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629-643. https://doi.org/10.1105/tpc.8.4.629
- Hammerschmidt, R. and Ku , J. 1995. Induced resistance to disease in plants. Kluwer Academic Publishes, Dordreeht, The Netherlands
- Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7:61-67.
- Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: Does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88:645-654. https://doi.org/10.1046/j.1365-2745.2000.00479.x
- Kunz, W., Schurter, R. and Maetzke, T. 1997. The chemistry of benzothiadiazole plant activators. Pes. Sci. 50:275-282. https://doi.org/10.1002/(SICI)1096-9063(199708)50:4<275::AID-PS593>3.0.CO;2-7
- Lawton, K. A., Friedrich, L., Hunt, M., Weymann, K., Delaney, T., Kessmann, H., Staub, T. and Ryals, J. 1996. Benzothiadiazole induces disease resistance in Arabidopsis by activation of the systemic acquired resistance signal transduction pathway. Plant J. 10:71-82. https://doi.org/10.1046/j.1365-313X.1996.10010071.x
- Lee, B., Lee, S. and Ryu, C.-M. 2012. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathgenic and non-pathogenic bacteria in pepper. Ann. Bot. 110:281-290. https://doi.org/10.1093/aob/mcs055
- Maldonado-Bonilla, L. D., Betancourt-Jimeinez, M. and Lozoya-Gloria, E. 2008. Local and systemic gene expression of sesquiterpene phytoalexin biosynthetic enzymes in plant leaves. Eur. J. Plant Pathol. 121:439-449. https://doi.org/10.1007/s10658-007-9262-1
- Maxson-Stein, K., He, S.-Y., Hammerschmidt, R. and Jones, A. L. 2002. Effect of treating apple trees with acibenzolar-S-methyl on fire blight and expression of pathogenesis-related protein genes. Plant Dis. 86:785-790. https://doi.org/10.1094/PDIS.2002.86.7.785
- Mysore, K. S. and Ryu, C.-M. 2004. Nonhost resistance: how much do we know? Trends Plant Sci. 9:97-104.
- Park, C. J., Shin, R., Park, J. M., Lee, G. J., Yoo, T. H. and Paek, K. H. 2001. A hot pepper cDNA encoding a pathogenesisrelated protein 4 is induced during the resistance response to tobacco mosaic virus. Mol. Cells 11:122-127.
- Park, C. J., Shin, R., Park, J. M., Lee, G. J., You, J. S. and Paek, K. H. 2002. Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus. Plant Mol. Biol. 48:243-254. https://doi.org/10.1023/A:1013383329361
- Reglinski, T., Dann, E. and Deverall, B. 2007. Intergration of induced resistance in crop production. In Induced resustance for plant defence, A sustainable approach to crop protection. Blackwell publishing, Oxford, UK, pp 201-228.
- Reignault, P. and Walters, D. 2007. Tropical application of inducers for disease control. In Induced resustance for plant defence, A sustainable approach to crop protection. Blackwell publishing, Oxford, UK, pp 179-200.
- Rico, A. and Prestion, G. M. 2008. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplst. Mol. Plant-Mictobe Interact. 21:269-282. https://doi.org/10.1094/MPMI-21-2-0269
- Schneider, M., Schweizer, P., Meuwly, P. and Metraux, J. 1996. Systemic acquired resistance in plants. Int. Rev. Cyt. 168:303-340. https://doi.org/10.1016/S0074-7696(08)60887-6
- Smith-Becker, J., Keen, N. T. and Becker, J. O. 2003. Acibenzolar- S-methyl induces resistanct to Colletotrichum lagenarium and cucumber mosaic virus in cantaloupe. Crop Prot. 22:769-774. https://doi.org/10.1016/S0261-2194(03)00044-9
- Vallad, G. E. G. and Robert, M. 2004. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 44:1920. https://doi.org/10.2135/cropsci2004.1920
- Yang, J. W., Yu, S. H. and Ryu, C.-M. 2009. Priming of defenserelated genes confers root-colonizing Bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25:389-399. https://doi.org/10.5423/PPJ.2009.25.4.389
- Yang, J. W., Yi, H.-S., Kim, H., Lee, B., Lee, S., Ghim, S.-Y. and Ryu, C.-M. 2011. Whitefly infestation of pepper plants elicits defense responses against bacterial pathogens in leaves and roots and changes the below-ground miroflora. J. Ecol. 99:46-56. https://doi.org/10.1111/j.1365-2745.2010.01756.x
- Yoshioka, K., Nakashita, H., Klessig, D. F. and Yamaguchi, I. 2001. Probenazole induces systemic acquired resistance in Arabidopsis with a novel type of action. Plant J. 25:149-157. https://doi.org/10.1046/j.1365-313x.2001.00952.x
Cited by
- Elicitation of Induced Resistance against Pectobacterium carotovorum and Pseudomonas syringae by Specific Individual Compounds Derived from Native Korean Plant Species vol.18, pp.10, 2013, https://doi.org/10.3390/molecules181012877
- Impact of a Bacterial Volatile 2,3-Butanediol on Bacillus subtilis Rhizosphere Robustness vol.7, 2016, https://doi.org/10.3389/fmicb.2016.00993
- Regulation of phosphatidylcholine-hydrolizing phospholipase C activity under the influence of biotic stress effectors in plants pp.9, 2014, https://doi.org/10.15407/dopovidi2014.09.134
- Exploring the mechanism and efficient use of a durable gene-mediated resistance to bacterial blight disease in rice vol.38, pp.2, 2018, https://doi.org/10.1007/s11032-018-0778-1
- CaLRR-RLK1, a novel RD receptor-like kinase from Capsicum annuum and transcriptionally activated by CaHDZ27, act as positive regulator in Ralstonia solanacearum resistance vol.19, pp.1, 2019, https://doi.org/10.1186/s12870-018-1609-6