• 제목/요약/키워드: Soil Erosion Factor

검색결과 115건 처리시간 0.029초

SWAT과 SATEEC 모형을 이용한 토양유실량 비교 (Comparison of Soil Loss Estimation using SWAT and SATEEC)

  • 박윤식;김종건;허성구;김남원;임경재
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.1295-1299
    • /
    • 2008
  • Soil erosion is a natural process and has been occurring in most areas in the watershed. However, accelerated soil erosion rates have been causing numerous environmental impacts in recent years. To reduce soil erosion and sediment inflow into the water bodies, site-specific soil erosion best management practices (BMPs) need to be established and implemented. The most commonly used soil erosion model is the Universal Soil Loss Equation (USLE), which have been used in many countries over 30 years. The Sediment Assessment Tool for Effective Erosion Control (SATEEC) ArcView GIS system has been developed and enhanced to estimate the soil erosion and sediment yield from the watershed using the USLE input data. In the last decade, the Soil and Water Assessment Tool (SWAT) model also has been widely used to estimate soil erosion and sediment yield at a watershed scale. The SATEEC system estimates the LS factor using the equation suggested by Moore and Burch, while the SWAT model estimates the LS factor based on the relationship between sub watershed average slope and slope length. Thus the SATEEC and SWAT estimated soil erosion values were compared in this study. The differences in LS factor estimation methods in the SATEEC and SWAT caused significant difference in estimated soil erosion. In this study, the difference was -51.9%(default threshold)$\sim$-54.5%(min. threshold) between SATEEC and non-patched SWAT, and -7.8%(default threshold)$\sim$+3.8%(min. threshold) between SATEEC and patched SWAT estimated soil erosion.

  • PDF

SWAT과 SATEEC 모형을 이용한 토양유실량 비교 (Comparison of Soil Loss Estimation using SWAT and SATEEC)

  • 박윤식;김종건;허성구;김남원;안재훈;박준호;김기성;임경재
    • 한국농공학회논문집
    • /
    • 제50권1호
    • /
    • pp.3-12
    • /
    • 2008
  • Soil erosion is a natural process and has been occurring in most areas in the watershed. However, accelerated soil erosion rates have been causing numerous environmental impacts in recent years. To reduce soil erosion and sediment inflow into the water bodies, site-specific soil erosion best management practices(BMPs) need to be established and implemented. The most commonly used soil erosion model is the Universal Soil Loss Equation(USLE), which have been used in many countries over 30 years. The Sediment Assessment Tool for Effective Erosion Control(SATEEC) ArcView GIS system has been developed and enhanced to estimate the soil erosion and sediment yield trom the watershed using the USLE input data. In the last decade, the Soil and Water Assessment Tool(SWAT) model also has been widely used to estimate soil erosion and sediment yield at a watershed scale. The SATEEC system estimates the LS factor using the equation suggested by Moore and Burch, while the SWAT model estimates the LS factor based on the relationship between sub watershed average slope and slope length. Thus the SATEEC and SWAT estimated soil erosion values were compared in this study. The differences in LS factor estimation methods in the SATEEC and SWAT caused significant difference in estimated soil erosion. In this study, the difference was -51.9%(default threshold)${\sim}-54.5%$(min. threshold) between SATEEC and non-patched SWAT, and -7.8%(default threshold)${\sim}+3.8%$(min. threshold) between SATEEC and patched SWAT estimated soil erosion.

GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구 (The Extraction of Soil Erosion Model Factors Using GSIS Spatial Analysis)

  • 이환주;김환기
    • 한국측량학회지
    • /
    • 제19권1호
    • /
    • pp.27-37
    • /
    • 2001
  • 강우나 물의 유출에 의한 토양침식은 농업 생산성을 떨어뜨리고 목초지를 손상시키며, 물의 흐름을 방해하는 등의 각종 환경적인 문제를 야기시키고 있다. 환경에 대한 관심이 고조되는 시점에서 토양침식이 매우 중요한 위치를 차지하고 있지만 아직은 체계적인 자료의 정리와 분석이 이루어지지 못하고 있는 실정이다. 본 연구는 최근 부각되고 있는 GSIS를 활용하여 토양침식을 예측하는 모형에 입력되는 인자를 추출하는 기법을 제시하는 것으로 침식모형에는 ANSWER, WEPP RUSLE 등 여러 가지가 있으나 본 연구에서는 GSIS 자료와의 연계가 용이하면서 유역에 대한 일반적인 토양침식을 예측할 수 있는 RUSLE 침식모형을 사용하였다. RUSLE 입력인자에는 강우침식인자 R, 토양침식인자 K, 침식사면의 길이인자 L, 침식사면의 경사인자 S, 식생피복인자 C 그리고 경작인자 P로 구성되어 있다. RUSLE 입력인자 중 L과 S인자 추출에 사용되었던 기존의 식은 대부분 농업지역에 적용된 식으로 유역에 적용시 한계가 있기 때문에 본 연구에서는 GSIS 자료를 통해 격자별로 유역에 적용 가능한 수정된 경험식을 활용하였다. 또한 격자형 RUSLE인자를 유역추출 알고리즘을 이용하여 유역별로 분석함으로서 유역별 RUSLE인자의 최소값, 최대값, 평균 그리고 표준편차를 계산할 수 있었다.

  • PDF

산불지역의 유출 및 토양침식 민감도 (Sensitivity of Runoff and Soil Erosion in the Burnt Mountains)

  • 박상덕;신승숙;이규송
    • 한국수자원학회논문집
    • /
    • 제38권1호
    • /
    • pp.59-71
    • /
    • 2005
  • 빈번하게 발생하고 있는 산불은 산지유역에 과도한 토사유출 문제를 일으키고 있다. 산불 이후 산지사면에서 강우에 의한 토사유출은 지표식생인자에 의해 지배되며 지표식생은 시간의 경과에 따라 점차 회복되고 이는 토사유출을 저감시킨다. 본 연구에서는 민감도를 강우에너지에 대한 유출 및 토양침식량의 비로 정의하고, 지표인자 변화에 따른 유출 및 토양침식 민감도의 특성을 분석하였다. 그 민감도에 대한 매개변수들의 상관관계를 분석한 결과 지표식생지수와의 상관성이 가장 높았으며 지수함수적인 관계를 나타내었다. 산불이후 경과시간에 따른 민감도는 산불피해복구 대책공법과 산불의 강도 모두 적합한 감소 기울기를 보였다. 산불발생 년도에 따른 토양침식민감도의 변화에서는 산불발생 이후 약 5년이 경과하면 토양침식민감도 변화가 적어 안정적인 범위 이내로 접어드는 것이 확인되었다.

고령지 농경지에서 융설에 의한 토양유실량 모의 (Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands)

  • 허성구;임경재;김기성;사공명;안재훈
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2005년도 학술발표논문집
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

한국형 토양유실공식에 의한 토양유실량 현장예측 (Application of KORSLE to Estimate Soil Erosion at Field Scale)

  • 송재민;양재의;임경재;박윤식
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제24권5호
    • /
    • pp.31-41
    • /
    • 2019
  • In 2013, the Ministry of Environment in South Korea promulgated a new regulatory bulletin that contained revised enforcement ordinance on soil management protocols. The bulletin recommends the use of Universal Soil Loss Equation (USLE) for the soil erosion estimation, but USLE has limited applicability in prediction of soil erosion because it does not allow direct estimation of actual mass of soil erosion. Therefore, there is a great need of revising the protocol to allow direct comparison between the measured and estimated values of soil erosion. The Korean Soil Loss Equation (KORSLE) was developed recently and used to estimate soil loss in two fields as an alternative to existing USLE model. KORSLE was applied to estimate monthly rainfall erosivity indices as well as temporal variation in potential soil loss. The estimated potential soil loss by KORSLE was adjusted with correction factor for direct comparison with measured soil erosion. The result was reasonable since Nash-Stucliff efficiency were 0.8020 in calibration and 0.5089 in validation. The results suggest that KORSLE is an appropriate model as an alternative to USLE to predict soil erosion at field scale.

RUSLE 기법을 이용한 경주지역의 토양침식 위험도 평가 (Risk Assessment of Soil Erosion in Gyeongju Using RUSLE Method)

  • 오정학;유주한;김경태;이우성
    • 환경영향평가
    • /
    • 제20권3호
    • /
    • pp.313-324
    • /
    • 2011
  • The purpose of this study is to present the raw data for establishing the plan of top soil conservation in soil environment and preventing the soil loss by establishing the potential amount of soil loss using RUSLE. The results are as follows. To apply the RUSLE model, we calculated the potential amount of soil loss by using 5 factors; rainfall erosion factor(R), topographical factor(LS), soil erosion factor(K), land cover factor(C) and erosion control factor(P). The assessment map of soil loss was drawn up by classifying 5 grades. According to the soil loss estimation by the RUSLE, it showed that approximately 83.9% of the study area had relatively lower possibility of soil loss which was the 1 ton/ha in annual soil loss. Whereas, the 7.0% of the study area was defined as high risk area which was the 10 ton/ha in annual. Therefore, this area was needed that there was environment-friendly construction of farm land, improvement of cultivation environment and so forth. In future, if we will analyze the amount of soil loss of Gyeongju national park and Hyeongsan river watershed, we will offer the help to establishing the conservation plan of soil environment in Gyeongsangbuk-do.

상하류 지형특성을 고려한 기반 GIS 토사유실 평가 (The estimation of GIS-based soil erosion considering up- and down-stream topographic characteristics)

  • 이근상;박진혁;황의호;고덕구
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.333-337
    • /
    • 2006
  • 본 연구에서는 원격탐사와 GIS 기술을 이용하여 지형특성을 분석하고 효과적인 토양보존계획 및 관리를 위해 검토되어야 할 토사유실 원인지역을 선정하기 위한 전략적 접근방법을 제시하였다. 이를 위해 지형학적으로 인접되어 있지만 저수지의 탁도에는 매우 큰 차이를 보이고 있는 안동과 임하호 유역을 선정하였다. 각 유역에 대한 효과적인 토양보존계획 및 관리를 위해서는 강우발생에 따른 토사유실의 전반적인 거동을 파악하는 것이 중요하다. 또한 토양보존 프로그램의 효용성을 증가시키기 위해서는 각 유역을 구성하고 있는 소유역별 토사유실 잠재성을 심도 있게 분석해야 한다. 특히 본 연구에서는 안동호와 임하호 유역을 상류, 중류, 하류로 구분하여 토양침식인자, 지형인자, 식생피복인자 그리고 토사유실량의 거동을 분석하였다. 여기서 제시된 접근방법은 토양보존계획을 위해 검토되고 관리되어야 할 우선지역 선정을 위한 가이드라인을 제공 할 것이다.

  • PDF

SATEEC 시스템을 이용한 객토 토양의 토성고려에 따른 도암댐 유역의 토양유실 및 유사량 분석 (Analysis of Soil Erosion and Sediment Yields at the Doam-dam Watershed considering Soil Properties from the Soil Reconditioned Agricultural Fields using SATEEC System)

  • 유동선;안재훈;윤정숙;허성구;박윤식;김종건;임경재;김기성
    • 한국물환경학회지
    • /
    • 제23권4호
    • /
    • pp.518-526
    • /
    • 2007
  • There have been serious soil erosion and water pollution problems caused by highland agriculture practices at Doam-dam watershed. Especially agricultural activities, chemical and organic fertilizer and pesticide applications, soil reconditioning to maintain soil fertility are known as primary causes of soil erosion and water qaulity degradation in the receiving water bodies. Among these, soil reconditioning can accelerate soil erosion rates. To develop soil erosion prevention practices, it is necessary to estimate the soil erosion from the watershed. Thus, the Universal Soil Loss Equation (USLE) model has been developed and utilized to assess soil erosion. However, the USLE model cannot be used at watershed scale because it does not consider sediment delivery ratio (SDR) for watershed application. For this reason, the Sediment Assessment Tool for Effective Erosion Control (SA TEEC) was developed to assess the sediment yield at any point in the watershed. The USLE-based SA TEEC system can estimate the SDR using area-based SDR and slope-based SDR module. In this study, the SATEEC system was used to estimate soil erosion and sediment yield at the Doam-dam watershed using the soil properties from reconditioned agricultural fields. Based on the soil sampling and analysis, the US LE K factor was calculated and used in the SA TEEC system to analyze the possible errors of previous USLE application studies using soil properties from the digital soil map, and compared with that using soil properties obtained in this study. The estimated soil erosion at the Doam-dam watershed without using soil properties obtained in the soil sampling and analysis is 1,791,400 ton/year (123 ton/ha/year), while the soil erosion amount is 2,429,900 ton/year (166.8 ton/ha/year) with the use of soil properties from the soil sampling and analysis. There is 35 % increase in estimated soil erosion and sediment yield with the use of soil properties from soil reconditioned agricultural fields. Since significant amount of soil erosion are known to be occurring from the agricultural fields, the soil erosion and sediment yield from only agricultural fields was assessed. The soil erosion rate is 45.9 ton/ha/year without considering soil properties from soil reconditioned agricultural fields, while 105.3 ton/ha/year after considering soil properties obtained in this study, increased in 129%. This study shows that it is very important to use correct soil properties to assess soil erosion and sediment yield simulation. It is recommended that further studies are needed to develop environment friendly soil reconditioning method should be developed and implemented to decrease the speed of soil erosion rates and water quality degradation.

걸리 침식 평가를 위한 SATEEC, nLS, USPED 연계 시스템의 개발 및 적용 (Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation)

  • 강현우;박윤식;김남원;옥용식;장원석;류지철;김기성;임경재
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.637-647
    • /
    • 2010
  • The Universal Soil Loss Equation (USLE)-based modeling systems have been widely used to simulate soil erosion studies. However the GIS-based USLE modeling systems have limitation in gully erosion evaluation which is one of the most important factor in soil erosion estimation. In this study, the integrated soil erosion evaluation system using with Sediment Assessment Tool for Effective Erosion Control (SATEEC) system, nLS and Unit Stream Power-based Erosion/Deposition (USPED) model was developed to simulate gully erosion. Gully head location using nLS model, USPED for gully erosion, and the SATEEC estimated sheet and rill erosion were evaluated and combined together with the integrated soil erosion evaluation system. This system was applied to the Haean-myeon watershed, annual average sediment-yield considering sheet, rill and gully erosion was simulated as 101,933 ton/year at the study watershed. if the integrated soil erosion evaluation system is calibrated and validated with the measured data, this system could be efficiently used in developing site-specific soil erosion best management system to reduce soil erosion and muddy water inflow into the receiving waterbody.