Browse > Article

Development and Application of Integrated System with SATEEC, nLS and USPED for Gully Erosion Evaluation  

Kang, Hyunwoo (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Park, Youn Shik (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Kim, Nam Won (Korea Institute of Construction Technology)
Ok, Yong Sik (Department of Biological Environment, Kangwon National University)
Jang, Won Seok (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Ryu, Ji Chul (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Kim, Ki-Sung (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Lim, Kyoung Jae (Departmet of Regional Infrastructures Engineering Program, Kangwon National University)
Publication Information
Abstract
The Universal Soil Loss Equation (USLE)-based modeling systems have been widely used to simulate soil erosion studies. However the GIS-based USLE modeling systems have limitation in gully erosion evaluation which is one of the most important factor in soil erosion estimation. In this study, the integrated soil erosion evaluation system using with Sediment Assessment Tool for Effective Erosion Control (SATEEC) system, nLS and Unit Stream Power-based Erosion/Deposition (USPED) model was developed to simulate gully erosion. Gully head location using nLS model, USPED for gully erosion, and the SATEEC estimated sheet and rill erosion were evaluated and combined together with the integrated soil erosion evaluation system. This system was applied to the Haean-myeon watershed, annual average sediment-yield considering sheet, rill and gully erosion was simulated as 101,933 ton/year at the study watershed. if the integrated soil erosion evaluation system is calibrated and validated with the measured data, this system could be efficiently used in developing site-specific soil erosion best management system to reduce soil erosion and muddy water inflow into the receiving waterbody.
Keywords
Gully erosion; nLS; SATEEC; Soil erosion; USLE; USPED;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 박윤식, 김종건, 박준호, 전지흥, 최동혁, 김태동, 최중대, 안재훈, 김기성, 임경재(2007). 임하댐 유역의 유사 거동모의를 위한 SWAT 모델의 적용성 평가. 수질보전 한국물환경학회지. 23(4), pp. 467-473
2 박철수(1999). 율문천 소유역에서 토지이용에 따른 붙특정 오염 Monitoring. 석사학위논문, 강원대학교.
3 정영상, 권영기, 임형식, 하상건, 양재의 (1999). 강원도 경사지 토양 유실예측용 신 USLE의 적용을 위한 강수 인자와 토양 침식성인자의 검토. 한국토양비료학회지, 32(1), pp. 31-38.
4 정필균, 고문환, 엄기태(1984). 토양유실량 예측을 위한 작부인자 검토. 한국토양비료학회지, 18(1), pp. 7-13.
5 최재완, 현근우, 이재운, 신동석, 김기성, 박윤식, 김종건, 임경재(2009). WEPP Watershed Version을 이용한 홍천군 자운리 농경지 토양유실 예측 및 경사도에 따른 토양유실량 평가. 수질보전 한국물환경학회지, 25(3), pp. 441-451.
6 한강수계관리위원회(2008). 한강수계 2007년도 환경기초조사업 한강수계 탁수저감대책 마련을 위한 연구.
7 허성구. 김기성, 사공명, 안재훈, 임경재(2005). 고랭지 농경지의 토양유실 모의를 위한 SWAT 모형의 적용성 평가. 한국농촌계획학회지, 11(4), pp. 67-74.   과학기술학회마을
8 허창희, 강인식(1988). 한국 지역 강수의 변동성에 관한 연구. 한국기상학회지, 24(1), pp. 38-48
9 Descroix, L., Gonzalez Barrios, J. L., Viramontes, D., Poulenard, J., Anaya, E., Esteves, M., and Estrada, J. (2008). Gully and sheet erosion on subtropical mountain slopes: Their respective roles and the scale effect. CATENA, 72, pp. 325-339.   DOI   ScienceOn
10 Elliot, W. J., Liebenow, A. M., Laflen, J. M., and Kohl, K. D. (1989). A compendium of soil erodibility data from WEPP cropland soil field erodibility experiments 1987 and 1988. NSERL Report No.3. USDA-ARS National Soil Erosion Research Lab., West Lafayette, IN.
11 Flanagan, D. C. and Nearing, M. A. (1995). USDA Water Erosion Prediction Project: Hillslope Profile and Watershed Model Documentation. NSERL Report No. 10. USDA-ARS National Soil Erosion Research Laboratory. West Lafayette, IN, 47907-1194.
12 Foster, G. R., Renard, K. G., Yoder, D. C., McCool, D. K., and Weesies, G. A. (1996). User's Guide, Soil & Water Cons. Soc.
13 Grabs, T., Selbert, J., Bishop, K., and Laudon, H. (2009). Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373(1-2), pp. 15-23.   DOI   ScienceOn
14 Kim, I. (2006). Identyfying the roles of overland flow characteristics and vegetated buffer systems for nonpoint source pollution control. Ph. D. Dissertation, Kansas State University, Manhattan, Kansas.
15 Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., and Kim, K. (2005). GiS-based sediment assessment tool. CATENA, 64, pp. 61-80.   DOI   ScienceOn
16 Montgomery, D. R. and Dietrich, W. E. (1989). Source areas. drainage density, and channel initiation. Water Resources Research, 25(8), pp. 1907-1918.   DOI
17 McCuen, R. H. and Spiess, J. M. (1995). Assessment of kinematic wave time of concentration. Journal of Hydrologic Engineering, 121(3), pp. 256-266.   DOI   ScienceOn
18 Mitas, L. and Mitasova, H. (1998). Distributed erosion modeling for effective erosion prevention. Water Resources Research, 34(3), pp. 505-516.   DOI   ScienceOn
19 Mitasova, H., Hofierka, J., Zlocha, M., and Iverson, L. R. (1996). Modeling topographic potential for erosion and deposition using GIS. Int. Journal of Geographical Information Science. 10(5), pp. 629-641. (reply to a comment to this paper appears in 1997 in Int. Journal of Geographical Informanon Science, 11(6)).
20 Montgomery, D. R. and Dietrich, W. E. (1992). Channel initiation and the problem of landscape scale. Science, 255, pp. 826-830.   DOI   ScienceOn
21 Moore, I. D., Burch, G. J., and Mackenzie, D. H. (1988). Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Transactions of the ASAE, 31(4), pp. 1098-1107.
22 Moore, I. and Burch, G. (1986a). Physical Basis of the Length-Slope Factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50, pp. 1294-1298.   DOI   ScienceOn
23 Moore, I. and Burch, G. (1986b). Modeling Erosion and Deposition: Topographic Effects. Transactions of the ASAE, 29(6), pp. 1624-1640.
24 Pandey, A., Chowdary, V. M., Mal, B. C., and Billib, M. (2008). Runoff and sediment yield modeling from a small agricultural watershed in India using the WEPP model. Journal of Hydrology, 348(3-4), pp. 305-319.   DOI   ScienceOn
25 Williams, J. R. (1975). Sediment routing for agricultural watersheds. Wafer Resour. Bull, 11(5), pp. 965-974.   DOI
26 Pieri, L., Bittelli, M., Joan, Q. W., Shuhui, D., Dennis, C. F., Paola, R. P., Francesca, V., and Fiorenzo S. (2007). Using the Water Erosion Prediction Project (WEPP) model to simulate field-observed runoff and erosion in the Apennines mountain range, Italy. Journal of Hydrology, 336(1-2), pp. 84-97.   DOI   ScienceOn
27 Vanoni, V. A. (1975). Sedimentation Engineering, Manual and Report No. 54, American Society of Civil Engineers, New York, N.Y.
28 Vieux, B. E., Cui, Z., and Gaur, A. (2004). Evaluation of a physicsbased distributed hydrologic model for flood forecasting. Journal of Hydrology, 298, pp. 154-155.
29 Wischmeier, W. H. and Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning. The USDA Agricultural Handbook No. 537.