• Title/Summary/Keyword: Soil Contamination Investigation

Search Result 117, Processing Time 0.023 seconds

Source Identification of Nitrate contamination in Groundwater of an Agricultural Site, Jeungpyeong, Korea

  • 전성천;이강근;배광옥;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.63-66
    • /
    • 2003
  • This study applied a hydrogeological field survey and isotope investigation to identify source locations and delineate pathways of groundwater contamination by nitrogen compounds. The infiltration and recharge processes were analyzed with groundwater-level fluctuation data and oxygen-hydrogen stable isotope data. The groundwater flow pattern was investigated through groundwater flow modeling and spatial and temporal variation of oxygen isotope data. Based on the flow analysis and nitrogen isotope data, source types of nitrate contamination in groundwater are identified. Groundwater recharge largely occurs in spring and summer due to precipitation or irrigation water in rice fields. Based on oxygen isotope data and cross-correlation between precipitation and groundwater level changes, groundwater recharge was found to be mainly caused by irrigation in spring and by precipitation at other times. The groundwater flow velocity calculated by a time series of spatial correlations, 231 m/yr, is in good accordance with the linear velocity estimated from hydrogeologic data. Nitrate contamination sources are natural and fertilized soils as non-point sources, and septic and animal wastes as point sources. Seasonal loading and spatial distribution of nitrate sources are estimated by using oxygen and nitrogen isotopic data.

  • PDF

Fluorescence Characteristic Spectra of Domestic Fuel Products through Laser Induced Fluorescence Detection

  • Wu, Ting-Nien;Chang, Shui-Ping;Tsai, Wen-Hsien;Lin, Cian-Yi
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.5
    • /
    • pp.18-25
    • /
    • 2014
  • Traditional investigation procedures of soil and groundwater contamination are followed by soil gas sampling, soil sampling, groundwater sampling, establishment of monitoring wells, and groundwater monitoring. It often takes several weeks to obtain the analysis reports, and sometimes, it needs supplemental sampling and analysis to delineate the polluted area. Laser induced fluorescence (LIF) system is designed for the detection of free-phase petroleum pollutants, and it is suitable for on-site real-time site investigation when coupling with a direct push testing tool. Petroleum products always contain polycyclic aromatic hydrocarbon (PAH) compounds possessing fluorescence characteristics that make them detectable through LIF detection. In this study, LIF spectroscopy of 5 major fuel products was conducted to establish the databank of LIF fluorescence characteristic spectra, including gasoline, diesel, jet fuel, marine fuel and low-sulfur fuel. Multivariate statistical tools were also applied to distinguish LIF fluorescence characteristic spectra among the mixtures of selected fuel products. This study successfully demonstrated the feasibility of identifying fuel species based on LIF characteristic fluorescence spectra, also LIF seemed to be uncovered its powerful ability of tracing underground petroleum leakages.

Environmental Conditions and Resource Management in Smallholder Dairy Farms in Thailand. II. Effects of Dairy Wastes on Water and Soil

  • Chantalakhana, C.;Korpraditsakul, R.;Skunmun, P.;Poondusit, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.220-225
    • /
    • 1999
  • The environmental conditions in smallholder dairy farms especially the effects of dairy wastes on waters and soil were the main objectives of this investigation. Forty-three dairy farms from an older dairy cooperative (Nongpho Dairy Cooperative, NP) were compared with four dairy fauns from relatively new dairy cooperative (Kamphaengsaen Dairy Cooperative, KS) for the quality parameters of water and soil samples during a 12-month period. Forty-three farms at NP were from three geographical areas and three levels farm crowdedness. The results from this study clearly showed that the waste waters from older dairy barns contained much higher levels of organic and inorganic substances which could create environmental pollution if not properly managed. The differences in waste water qualities due to areas and seasons were not significant, while waste water samples from crowded farms tended to contain higher averages of waste water parameters such as COD and BOD. Highly significant correlations between pairs of waste water parameters indicated that certain parameters can be used without the need for chemical analysis of some other parameters. The qualities of well water on dairy farms as well as water samples from public waterways nearby indicated some contamination of dairy wastes such as manure. Storage and sun-drying of dairy manure on bare soil surface could result in the contamination of underground water and nearby water sources. Some recommendations from this study if implemented can prevent environmental pollution in smallholder dairy farms.

Investigation on the Contamination of the Vicinity of Abandoned Coal Mines Located Near the Obong Darn and Preventive Measures (오봉댐 유역의 폐탄광에 의한 오염특성과 감소방안 연구)

  • Park, Sun Hwan;Chang, Yoon Young;Jeong, Jeong Ho;Son, Jeong Ho;Park, Seok Hyo
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.2
    • /
    • pp.143-156
    • /
    • 2007
  • This study has researched the management status and the pollution level of water, soil, stream sediments of 11 abandoned coal mines out of a total of 12 within Obong-Dam area except Bukyung mine, which was submerged when constructing Obong-Dam, and selected areas which are in needs to have pollution control facilities in the first place. From the results of examination on the runoff at the waste rock pile and mineheads, the runoff from Sueun mine (pH, Fe, Al), Samwon mine (pH, Al), Wangdo mine (pH, Al), Mose mine (pH, Fe, Al) and Daeryeong mine (pH) exceeded the permissible discharge standards of the water quality, but the water at merging point with Obong-Dam after joined with Doma branch satisfied both Water Quality Standards and Drinking Water Quality Standards. In regard to groundwater contamination, it is found that areas where exceeded the Drinking Water Quality Standards are Wangdo mine (pH), Jangjae mine (pH, Zn), Daeryeong mine (pH) whereas all areas satisfied Soil Contamination Warning Standards of Soil Environmental Conservation Law. When comparing a research result on underwater sediments of branches of abandoned mines to the EPA Guidelines for classification of great lakes harbor sediments, Dongguk Gaerim (Fe), Jungwon mine (Fe), Daebo mine (Mn), Samwon mine (Mn) and Daeryeong mine (Mn) showed mid-level of contamination, whereas Sueun (Fe, Mn), Daebo mine (Fe), Woosung mine (Fe, Mn), Wangdo mine (Fe, Mn), Mose mine (Fe) and Daeryeong mine (Fe) showed high-level of contamination. In addition, contamination levels of underwater sediments in Wangsan and Doma branch where abandoned mine's branches merge together, Wangsan branch showed no contamination at all whereas Doma branch shows mid-level of contamination which reflect the Doma branch is affected by waste rock pile and minehead runoff of the abandoned mines in the Doma branch area. It is concluded that Mose mine and Sueun mine required treatment of acid mine drainage. and Wangdo, Jungwon, and Samwon mines were in need of mine tailing and erosion control work. The Samwon mine additionally required a control system for closed minehead runoff. Although the Samwon mine reached a high concentration of Al, Mn $Ca^{2+}$, $SO{_4}^{2-}$ in the runoff, the levels decreased after it was combined with a tributary. It has been concluded that after further monitoring of the cause of pollution, a preventive measure system may be needed to be built.

Investigation of Soil Pollution Status for Railroad Depot (철도 차량기지의 토양오염 실태 조사)

  • Oa, Seong-Wook;Lee, Tae-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.788-792
    • /
    • 2009
  • Railroad is well known for eco-friendly transportation system. But, for past few decades, there might be happened many contamination acts in railway facility sites. Industrial and municipal solid wastes produced to maintain and fix trains were dumped to underground of railroad depot area. To develop and reconstruct this area, we should remediate the contaminated soil and ground water. This study was conducted to evaluate the soil pollution status of railroad depot and propose the optimum remediation processes. Our investigation showed that main pollutants sources were TPH and some heavy metals from the dump site. The surveying results for the soil under rail track and crossing nose areas showed TPH contamination from crossing nose area causing lubricant agent. It could be use and rehabilitate the railroad facility areas to an intended purpose with an application of well designed in-situ and ex-situ remediation processes.

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine (폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사)

  • Han-Gyum Kim;Bum-Jun Kim;Myoung-Soo Ko
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.717-726
    • /
    • 2022
  • This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

Remediation of Soil Surrounding Abandoned Metal Mine By Using Low Molecular Weight Organic Acid (저분자 유기산을 이용한 폐금속광산 주변토양 정화)

  • 이동호;박옥현
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.183-188
    • /
    • 1998
  • The efficiency of removing cadmium, copper, and lead from a contaminated soil of abandoned metal mine was studied in a laboratory investigation where citric acid were used to extract the metal from the soil. The contamination level of Pb, Cu in the soil A were 875.5, 667.5mg/kg respectively. The mobility and bioavailability of the metals in soil were also estimated by Sequential Chemical Extractions. Citric acid were examined for its potential extractive capabilities. Concentrations of the acid examined in this study ranged from 0.025 to 0.15M. The pH of the suspensions and S/S ratio in which the extractions were performed ranged from 2.4 to 8.1, and from 2.1:1 to 20:1. Results showed that the removal of contaminant using citric acid was pH and S/S raton dependent.

  • PDF

A Study on Present International Status and Implications for Introduction of Contaminated Land Register System into Korea (토양환경 이력관리제 도입을 위한 해외 사례 고찰)

  • Yoo, Keunje;Yang, Jihoon;Kim, Jae Hoon;Hwang, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.4
    • /
    • pp.10-19
    • /
    • 2016
  • Land contamination has emerged as a major environmental and land management issue over the last decade. Although the importance of contaminated land management was continuously increased and many developed countries tried to make advanced contaminated land register system, current Korea soil regulations and policies have not been considered yet. This study analyzed existing or developing contaminated land register system from various countries to suggest implications of environmental decision support. Through this study, the introduction of contaminated land management system as creating a new system in Korea needs to considerable review to the following in order to achieve the objective through a effective adoption and operation (1) we need to establish contaminated land register system by providing a proper legal basis before the imposition of data collection, investigation, and management, (2) sufficient examination is required to identify scope of information disclosure and criteria, contents, and subjects of items from contaminated land register system.

Impact of the Geochemical Characteristics and Potential Contaminants Source of Surrounding Soil on Contamination of a Reservoir in an Island (I) - Evaluation of Potential Liquation by Sediment - (주변토양의 지구화학적 특성과 잠재적 오염원이 도서지역 저수지의 오염부하에 미치는 영향(I) - 퇴적토에 의한 잠재적 용출특성 평가 -)

  • Park, Sun-Hwan;Park, Wan-Sub;Kim, Chang-Gyun;Park, Joong-Gyu;Kim, Wan-Hee;Chang, Yoon-Young;Jeong, Jeong-Ho;Lee, Sun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.107-116
    • /
    • 2010
  • In this research potential liquation of contaminants from surrounding soil to a reservoir in an island was studied to investigate the cause and route of contamination of Baengyeong-myeon reservoir. Soil of Baengyeong-myeon reservoir consists of $SiO_2$ and has a high iron content because of geological characteristics of its country rock. From the field investigation and simulation study it was found that highly accumulated carbon content in the reservoir sediment was incurred from ground water, which provides a good habitat for microbes. And the liquation, the cause of organics growth, occurs mainly on the bottom of the reservoir consisting marine clay layer once used as farmland. So dredging of the sediment of reservoir and replacing with valley soil is suggested to prevent continuous contamination of a reservoir in an island due to COD production.

Assessment of Contamination of Harbor Dredged Materials for Beneficial Use (항만준설토사 유효활용을 위한 오염도 평가)

  • Yoon, Gil-Lim;Jeong, Woo-Seob
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.15-25
    • /
    • 2008
  • Contamination level assessment of harbor dredged materials is carried out for beneficial use, which generated annually due to port construction and maintenance of harbor channel. The basic purpose of environmental risk assessment was a scientific approach to susceptibility of hazard risk to human's health from different dredged materials. And this paper proposes a guideline of safely beneficial use of dredged materials at both industrial area and residental area, generated from major port execution throughout a sound investigation of their contamination levels. Newly proposed guidelines were in general higher levels compared to both current guidelines of treatment and use of dredged materials and soil environment protection levels. Finally, environmental assessment results of dredged material contamination generated in major ports of Korea for beneficial use based on pre-assessment environmental levels show that some port's dredged materials contain heavy metals such as Cd, As, Cr and Zn, more than base levels which requires more precise contamination investigation. Others were found to be very appropriate for beneficial use.