Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.717

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine  

Han-Gyum Kim (Department of Integrated Energy and Infra System, Kangwon National University)
Bum-Jun Kim (Department of Integrated Energy and Infra System, Kangwon National University)
Myoung-Soo Ko (Department of Integrated Energy and Infra System, Kangwon National University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 717-726 More about this Journal
Abstract
This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.
Keywords
geochemical distribution; contamination source identification; heavy metals; arsenic; soil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tomlinson, D.L., Wilson, J.G., Harris, C.R. and Jeffrey, D.W. (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, v.33, p.566-575. doi: 10.1007/BF02414780   DOI
2 Wilson, S.C., Lockwood, P.V., Ashley, P.M. and Tighe, M. (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, v.158, p.1169-1181. doi: 10.1016/j.envpol.2009.10.045   DOI
3 Yi, J.M. and Chon, H.T. (2003) Migration and enrichment of arsenic in rock-soil-crop plant system in areas covered with black shale and slates of Okchon Zone. Econ. Environ. Geol., v.36, p.295-304.
4 Yoo, J.H., Lee, J.W., Yoon, J.H., Kim, M.H., Kim, S.I. and Kim, S.C. (2020) Effect of organic matter of various C: N ratios on the solubility of arsenic, manganese, and iron in paddy soil and on arsenic availability to plants. J. Environ. Anal., Health Toxicol., v.23, p.211-221. doi: 10.36278/jeaht.23.4.211   DOI
5 Arunakumara, K.K.I.U. and Zhang, X. (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J. Ocean Univ. China, v.7, p.60-64. doi: 10.1007/s11802-008-0060-y   DOI
6 Barbieri, M., Nigro, A. and Sappa, G. (2015) soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Senses and Sciences, v.2, p.94-97.
7 Barbieri, M. (2016) The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys., v.5, p.1-4.   DOI
8 Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol., v.37, p.1-19.
9 Bhumbla, D.K. and Keefer, R.F. (1994) Arsenic mobilization and bioavailability in soils. In: Niagru, J.O. (Ed.): Arsenic in the Environment. Part I: Cycling and Characterization. Wiley, New York 1994, p.51-82.
10 Cevik, F., Goksu, M.Z.L., Derici, O.B. and Findik, O. (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ. Monit. Assess., v.152, p.309-317. doi: 10.1007/s10661-008-0317-3   DOI
11 Choi, S.G., Park, S.J., Kim, S.W., Kim, C.S. and Oh, C.W. (2006) Mesozoic gold-silver mineralization in South Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Environ. Geol., v.39, p.567-581.
12 Chon, H.T., Kim, J.Y. and Choi, S.Y. (1998) Evaluation of heavy metal contamination in geochemical environment around the abandoned coal mine-with special reference to geochemical environment around the Imgok creek in the Gangreung coal field. Econ. Environ. Geol., v.31, p.499-508.
13 Hyeon, G.S., Park, C.S., Jung, S.J., Rim, S.K. and Um, K.T. (1991) Soil CEC for textural classes in Korea. Korean J. Soil Sci. Fert., v.24, p.10-16.
14 Jung, G.B., Lee, J.S., Kim, W.I., Kim, J.H., Shin, J.D. and Yun, S.G. (2005) Fractionation and potential mobility of heavy metals in tailings and paddy soils near abandoned metalliferous mines. Korean J. Soil Sci. Fert., v.38, p.259-268.
15 Jung, M.C., Jung, M.Y. and Choi, Y.W. (2004) Environmental assessment of heavy metals around abandoned metalliferous mine in Korea. Econ. Environ. Geol., v.37, p.21-33.
16 Kang, H., Kim, Y.H., Jang, Y.D. and Kim, J.J. (2012) Studies on mineralogical and geochemical characterization of tailings and leachate water in Yonghwa mine, Yeongyang area. Econ. Environ. Geol., v.45, p.265-276. doi: 10.9719/eeg.2012.45.3.265   DOI
17 Jung, M.C. and Jung, M.Y. (2006) Evaluation and management method of environmental contamination from abandoned metal mines in Korea. J. KSMER, v.43, p.383-394.
18 Jung, M.Y., Kim, S.H., An, Y.H., Lee, Y.J., Lee, C.H., Kim, J.W. and Jeon, C.S. (2015) Remediation technologies and characteristics of contaminated soil in the vicinity of Sang-dong mine. J. KSMER, v.52, p.31-41. doi: 10.12972/ksmer.2015.52.1.031   DOI
19 Kabata-Pendias, A. (2011) Trace elements in soils and plants/fourth editions. CRC Taylor and Francis Group, Boca Raton, p.353-366. doi: 10.1201/b10158   DOI
20 Kim, J.D. (2005) Assessment of pollution level and contamination status on mine tailings and soil in the vicinity of disused metal mines in Kangwon province. J. KSEE, v.27, p.626-634.
21 Kim, O.J. (1970) Metallogenic province of Au-Ag deposits in South Korea. Econ. Environ. Geol., v.3, p.163-167.
22 KMoE (Korea Ministry of Environment) (2018) Enforcement Decree of the Soil Environment Conservation Act. Seoul, Korea.
23 KMoE (Korea Ministry of Environment) (2021) Enforcement Decree of the Framework Act on Environmental Policy. Seoul, Korea.
24 Ko, M.S., Nguyen, T.H., Kim, Y.G., Linh, B.M., Chanpiwat, P., Hoang, H.N.T. and Kim, K.W. (2020) Assessment and source identification of As and Cd contamination in soil and plants in the vicinity of the Nui Phao mine, Vietnam. Environ. Geochem, Health, v.42, p.4193-4201. doi: 10.1007/s10653-020-00631-1   DOI
25 NIoFS (National Institute of Forest Science) (2014) Soil and Plants Analysis. Seoul, Korea, p.1-158.
26 Lee, J.S. and Chon, H.T. (2004) Human risk assessment of toxic heavy metals around abandoned metal mine sites. Econ. Environ. Geol., v.37, p.73-86.
27 Mensah, A.K., Marschner, B., Antoniadis, V., Stemn, E., Shaheen, S.M. and Rinklebe, J. (2021) Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Science of the Total Environment, v.798, 149272. doi: 10.1016/j.scitotenv.2021.149272   DOI
28 MIRECO (Korea Mine Reclamation Corporation) (2018) Mine Pollution Statistical Yearbook. MIRECO report, Wonju, Korea, p.61.
29 Ogbeibu, A.E., Omoigberale, M.O., Ezenwa, I.M., Eziza, J.O. and Igwe, J.O. (2014) Using pollution load index and geoaccumulation index for the assessment of heavy metal pollution and sediment quality of the Benin river, Nigeria. Natural Environment, v.2, p.1-9.   DOI
30 Park, J.D. (2010) Heavy metal poisoning. Hanyang Medical Reviews, v.30, p.319-325. doi: 10.7599/hmr.2010.30.4.319   DOI
31 Park, H.S., Kim, D.K., Oh, Y.S., Ji, W.H., Park, M.J., Lee, J.S., Lee, J.U. and Ko, M.S. (2018) Application method for SAPS substrate materials according to mine drainage properties. J. KSMER, v.55, p.395-404. doi:10.32390/ksmer.2018.55.5.395   DOI
32 Rabee, A.M., Al-Fatlawy, Y.F. and Nameer, M. (2011) Using pollution load index (PLI) and geoaccumulation index (Igeo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad region. ANJS, v.14, p.108-114. doi: 10.22401/JNUS.14.4.14   DOI
33 Hwang, S.I., Myeong, S.J. and Han, Y.S. (2017) A study of policy alternatives for managing heavy-metal contaminated agricultural soils by natural causes. 수시연구보고서, 2017(14), p.1-85. doi: 10.23000/TRKO201800014410   DOI