DOI QR코드

DOI QR Code

Geochemical Contamination Assessment and Distribution Property Investigation of Heavy Metals, Arsenic, and Antimony Vicinity of Abandoned Mine

폐광산 인근지역에서 중금속, 비소, 안티모니의 지구화학적 오염도 평가 및 분산 특성 조사

  • Han-Gyum, Kim (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Bum-Jun, Kim (Department of Integrated Energy and Infra System, Kangwon National University) ;
  • Myoung-Soo, Ko (Department of Integrated Energy and Infra System, Kangwon National University)
  • 김한겸 (강원대학교 에너지.인프라 시스템 용합학과 ) ;
  • 김범준 (강원대학교 에너지.인프라 시스템 용합학과 ) ;
  • 고명수 (강원대학교 에너지.인프라 시스템 용합학과 )
  • Received : 2022.12.20
  • Accepted : 2022.12.22
  • Published : 2022.12.28

Abstract

This study was conducted to assess the geochemical contamination degree of As, Cd, Cu, Pb, Sb, and Zn in the soil and water samples from an abandoned gold mine. Enrichment Factor (EF), Geoaccumulation Index (Igeo), and Pollution Load Index (PLI) were carried out to assess the geochemical contamination degree of the soil samples. Variations of sulfate and heavy metals concentration in water samples were determined to identify the geochemical distribution with respect to the distance from the mine tailing dam. Geochemical pollution indices indicated significant contaminated with As, Cd, Pb, and Zn in the soil samples that areas close to the mine tailing dam, while, Sb showed similar indices in all soil samples. These results indicated that the As, Cd, Pb, and Zn dispersion has occurred via anthropogenic sources, such as mining activities. In terms of water samples, anomalies in the concentrations of As, Cd, Zn, and SO42- was determined at specific area, in addition, the concentrations of the elements gradually decreased with distance. This result implies the heavy metals distribution in water has carried out by the weathering of sulfide minerals in the mine tailing and soil. The study area has been conducted the remediation of contaminated soil in the past, however, the geochemical dispersion of heavy metals was supposed to be occurred from the potential contamination source. Therefore, continuous monitoring of the soil and water is necessary after the completion of remediation.

이 연구는 폐금·은광산 주변의 토양과 수계에서 비소(As), 카드뮴(Cd), 구리(Cu), 납(Pb), 안티모니(Sb), 아연(Zn)의 지구화학적 분산 특성을 확인하였다. 토양시료 내 각 원소의 지구화학적 오염도는 enrichment factor (EF), geoaccumulation index (Igeo), pollution load index (PLI)와 같은 지화학 지수를 이용해 평가하였다. 수계의 지구화학적 오염도는 광물찌꺼기 적치장에서부터 거리에 따른 중금속 및 황산염(SO42-)의 농도 변화를 이용하여 평가하였다. 지화학 지수를 이용한 토양의 오염도 평가 결과 광산 및 광물찌꺼기 저장시설과 가까운 지역에서 As, Cd, Pb, Zn의 농축지수가 높게 나타났으며, Sb는 모든 토양시료에서 높은 농축지수를 보였다. 이러한 결과는 광산 활동으로 대표되는 인위적인 요인에 의해 주변의 토양으로 중금속의 분산이 진행되었음을 보여주는 결과이다. 수계에서 중금속 농도 및 SO42-의 농도 변화를 확인한 결과 특정 지점에서 As, Cd, Zn, 그리고 SO42- 농도의 이상점이 나타났으며, 거리에 따라 점차 각 원소의 농도가 감소하였다. 이는 수계의 오염이 광물찌꺼기 적치장과 그 인근의 황화광물의 풍화에 기인한 것을 의미한다. 조사를 수행한 지역에서는 과거에 중금속으로 오염된 토양의 복원사업이 진행되었지만, 그 이후에도 잠재적인 오염원인 광물찌꺼기 적치장 인근에서부터 오염이 다시 진행되고 있는 것으로 판단된다. 따라서 복원을 완료한 지역에서도 토양과 수질시료를 대상으로 지속적인 모니터링이 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업(NRF-2017R1A6A3A04008168)과 한국광해관리공단 광해방지기술개발사업의 지원을 받아 수행하였습니다.

References

  1. Arunakumara, K.K.I.U. and Zhang, X. (2008) Heavy metal bioaccumulation and toxicity with special reference to microalgae. J. Ocean Univ. China, v.7, p.60-64. doi: 10.1007/s11802-008-0060-y
  2. Barbieri, M., Nigro, A. and Sappa, G. (2015) soil contamination evaluation by enrichment factor (EF) and geoaccumulation index (Igeo). Senses and Sciences, v.2, p.94-97.
  3. Barbieri, M. (2016) The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys., v.5, p.1-4. https://doi.org/10.4172/2381-8719.1000237
  4. Bhumbla, D.K. and Keefer, R.F. (1994) Arsenic mobilization and bioavailability in soils. In: Niagru, J.O. (Ed.): Arsenic in the Environment. Part I: Cycling and Characterization. Wiley, New York 1994, p.51-82.
  5. Cevik, F., Goksu, M.Z.L., Derici, O.B. and Findik, O. (2009) An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environ. Monit. Assess., v.152, p.309-317. doi: 10.1007/s10661-008-0317-3
  6. Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ. Environ. Geol., v.37, p.1-19.
  7. Choi, S.G., Park, S.J., Kim, S.W., Kim, C.S. and Oh, C.W. (2006) Mesozoic gold-silver mineralization in South Korea: Metallogenic provinces reestimated to the geodynamic setting. Econ. Environ. Geol., v.39, p.567-581.
  8. Chon, H.T., Kim, J.Y. and Choi, S.Y. (1998) Evaluation of heavy metal contamination in geochemical environment around the abandoned coal mine-with special reference to geochemical environment around the Imgok creek in the Gangreung coal field. Econ. Environ. Geol., v.31, p.499-508.
  9. Hyeon, G.S., Park, C.S., Jung, S.J., Rim, S.K. and Um, K.T. (1991) Soil CEC for textural classes in Korea. Korean J. Soil Sci. Fert., v.24, p.10-16.
  10. Jung, G.B., Lee, J.S., Kim, W.I., Kim, J.H., Shin, J.D. and Yun, S.G. (2005) Fractionation and potential mobility of heavy metals in tailings and paddy soils near abandoned metalliferous mines. Korean J. Soil Sci. Fert., v.38, p.259-268.
  11. Jung, M.C., Jung, M.Y. and Choi, Y.W. (2004) Environmental assessment of heavy metals around abandoned metalliferous mine in Korea. Econ. Environ. Geol., v.37, p.21-33.
  12. Jung, M.C. and Jung, M.Y. (2006) Evaluation and management method of environmental contamination from abandoned metal mines in Korea. J. KSMER, v.43, p.383-394.
  13. Jung, M.Y., Kim, S.H., An, Y.H., Lee, Y.J., Lee, C.H., Kim, J.W. and Jeon, C.S. (2015) Remediation technologies and characteristics of contaminated soil in the vicinity of Sang-dong mine. J. KSMER, v.52, p.31-41. doi: 10.12972/ksmer.2015.52.1.031
  14. Kabata-Pendias, A. (2011) Trace elements in soils and plants/fourth editions. CRC Taylor and Francis Group, Boca Raton, p.353-366. doi: 10.1201/b10158
  15. Kang, H., Kim, Y.H., Jang, Y.D. and Kim, J.J. (2012) Studies on mineralogical and geochemical characterization of tailings and leachate water in Yonghwa mine, Yeongyang area. Econ. Environ. Geol., v.45, p.265-276. doi: 10.9719/eeg.2012.45.3.265
  16. Kim, J.D. (2005) Assessment of pollution level and contamination status on mine tailings and soil in the vicinity of disused metal mines in Kangwon province. J. KSEE, v.27, p.626-634.
  17. Kim, O.J. (1970) Metallogenic province of Au-Ag deposits in South Korea. Econ. Environ. Geol., v.3, p.163-167.
  18. KMoE (Korea Ministry of Environment) (2018) Enforcement Decree of the Soil Environment Conservation Act. Seoul, Korea.
  19. KMoE (Korea Ministry of Environment) (2021) Enforcement Decree of the Framework Act on Environmental Policy. Seoul, Korea.
  20. Ko, M.S., Nguyen, T.H., Kim, Y.G., Linh, B.M., Chanpiwat, P., Hoang, H.N.T. and Kim, K.W. (2020) Assessment and source identification of As and Cd contamination in soil and plants in the vicinity of the Nui Phao mine, Vietnam. Environ. Geochem, Health, v.42, p.4193-4201. doi: 10.1007/s10653-020-00631-1
  21. Lee, J.S. and Chon, H.T. (2004) Human risk assessment of toxic heavy metals around abandoned metal mine sites. Econ. Environ. Geol., v.37, p.73-86.
  22. Mensah, A.K., Marschner, B., Antoniadis, V., Stemn, E., Shaheen, S.M. and Rinklebe, J. (2021) Human health risk via soil ingestion of potentially toxic elements and remediation potential of native plants near an abandoned mine spoil in Ghana. Science of the Total Environment, v.798, 149272. doi: 10.1016/j.scitotenv.2021.149272
  23. MIRECO (Korea Mine Reclamation Corporation) (2018) Mine Pollution Statistical Yearbook. MIRECO report, Wonju, Korea, p.61.
  24. NIoFS (National Institute of Forest Science) (2014) Soil and Plants Analysis. Seoul, Korea, p.1-158.
  25. Ogbeibu, A.E., Omoigberale, M.O., Ezenwa, I.M., Eziza, J.O. and Igwe, J.O. (2014) Using pollution load index and geoaccumulation index for the assessment of heavy metal pollution and sediment quality of the Benin river, Nigeria. Natural Environment, v.2, p.1-9. https://doi.org/10.12966/ne.05.01.2014
  26. Park, J.D. (2010) Heavy metal poisoning. Hanyang Medical Reviews, v.30, p.319-325. doi: 10.7599/hmr.2010.30.4.319
  27. Park, H.S., Kim, D.K., Oh, Y.S., Ji, W.H., Park, M.J., Lee, J.S., Lee, J.U. and Ko, M.S. (2018) Application method for SAPS substrate materials according to mine drainage properties. J. KSMER, v.55, p.395-404. doi:10.32390/ksmer.2018.55.5.395
  28. Rabee, A.M., Al-Fatlawy, Y.F. and Nameer, M. (2011) Using pollution load index (PLI) and geoaccumulation index (Igeo) for the assessment of heavy metals pollution in Tigris river sediment in Baghdad region. ANJS, v.14, p.108-114. doi: 10.22401/JNUS.14.4.14
  29. Hwang, S.I., Myeong, S.J. and Han, Y.S. (2017) A study of policy alternatives for managing heavy-metal contaminated agricultural soils by natural causes. 수시연구보고서, 2017(14), p.1-85. doi: 10.23000/TRKO201800014410
  30. Tomlinson, D.L., Wilson, J.G., Harris, C.R. and Jeffrey, D.W. (1980) Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoland Marine Research, v.33, p.566-575. doi: 10.1007/BF02414780
  31. Wilson, S.C., Lockwood, P.V., Ashley, P.M. and Tighe, M. (2010) The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review. Environmental Pollution, v.158, p.1169-1181. doi: 10.1016/j.envpol.2009.10.045
  32. Yi, J.M. and Chon, H.T. (2003) Migration and enrichment of arsenic in rock-soil-crop plant system in areas covered with black shale and slates of Okchon Zone. Econ. Environ. Geol., v.36, p.295-304.
  33. Yoo, J.H., Lee, J.W., Yoon, J.H., Kim, M.H., Kim, S.I. and Kim, S.C. (2020) Effect of organic matter of various C: N ratios on the solubility of arsenic, manganese, and iron in paddy soil and on arsenic availability to plants. J. Environ. Anal., Health Toxicol., v.23, p.211-221. doi: 10.36278/jeaht.23.4.211