• Title/Summary/Keyword: Software risk

Search Result 850, Processing Time 0.027 seconds

A Study on the Application of Cybersecurity by Design of Critical Infrastructure (주요기반시설의 사전예방적보안(Cybersecurity by Design) 적용 방안에 관한 연구)

  • YOO, Jiyeon
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.674-681
    • /
    • 2021
  • Cyber attacks targeting critical infrastructure are on the rise. Critical infrastructure is defined as core infrastructures within a country with a high degree of interdependence between the different structures; therefore, it is difficult to sufficiently protect it using outdated cybersecurity techniques. In particular, the distinction between the physical and logical risks of critical infrastructure is becoming ambiguous; therefore, risk management from a comprehensive perspective must be implemented. Accordingly, as a means of further actively protecting critical infrastructure, major countries have begun to apply their security and cybersecurity systems by design, as a more expanded concept is now being considered. This proactive security approach (CSbD, Cybersecurity by Design) includes not only securing the stability of software (SW) safety design and management, but also physical politics and device (HW) safety, precautionary and blocking measures, and overall resilience. It involves a comprehensive security system. Therefore, this study compares and analyzes security by design measures towards critical infrastructure that are leading the way in the US, Europe, and Singapore. It reflects the results of an analysis of optimal cybersecurity solutions for critical infrastructure. I would like to present a plan for applying by Design.

An Exploratory Study on Sales and Operations Planning as SCM Supporting Tool (공급망 관리 지원도구로서의 S&OP 운영에 관한 탐색적 연구)

  • Park, Seong Taek;Kim, Tae Ung;Kim, Mi Ryang
    • Journal of Digital Convergence
    • /
    • v.19 no.2
    • /
    • pp.93-103
    • /
    • 2021
  • S&OP(Sales and Operations Planning) is an ongoing process of periodic planning, reviewing, and evaluation through the involvement of all key stakeholders. Within this process, performance is regularly reviewed and early warning signals are generated, so that the company can react quickly to changing market and operational environment. This paper presents a framework for effective S&OP for fair alignment, accountability, teamwork, visibility, and risk management. This framework focuses on supply chain information governance, level of information sharing through S&OP, role of S&OP as coordination mechanism, APS effectivesness as a planning tool and SCM performance. In addition, a brief case study on the operating characteristics of S&OP at three Korean firms is presented. Implications of the study finding are also provided. It will also make companies that are considering the introduction of S&OP aware of the importance of S&OP, which will provide practical guidelines for the introduction of S&OP.

Accuracy Analysis for Slope Movement Characterization by comparing the Data from Real-time Measurement Device and 3D Model Value with Drone based Photogrammetry (도로비탈면 상시계측 실측치와 드론 사진측량에 의한 3D 모델값의 정확도 비교분석)

  • CHO, Han-Kwang;CHANG, Ki-Tae;HONG, Seong-Jin;HONG, Goo-Pyo;KIM, Sang-Hwan;KWON, Se-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.234-252
    • /
    • 2020
  • This paper is to verify the effectiveness of 'Hybrid Disaster Management Strategy' that integrates 'RTM(Real-time Monitoring) based On-line' and 'UAV based Off-line' system. For landslide prone area where sensors were installed, the conventional way of risk management so far has entirely relied on RTM data collected from the field through the instrumentation devices. But it's not enough due to the limitation of'Pin-point sensor'which tend to provide with only the localized information where sensors have stayed fixed. It lacks, therefore, the whole picture to be grasped. In this paper, utilizing 'Digital Photogrammetry Software Pix4D', the possibility of inference for the deformation of ungauged area has been reviewed. For this purpose, actual measurement data from RTM were compared with the estimated value from 3D point cloud outcome by UAV, and the consequent results has shown very accurate in terms of RMSE.

The Definition of Frail Elderly and the Frailty Screening Assessment Tool: A Systematic Review (허약노인의 정의 및 허약 선별 평가도구에 관한 체계적 고찰)

  • Lee, Gyeong A;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.10 no.3
    • /
    • pp.43-56
    • /
    • 2021
  • Objective : The objective of this study was to present the components of frailty by organizing the definitions of frail elderly and analyzing the tools used to screen them. Methods : This study searched for articles at involved frailty screening assessments in the elderly. Databases including CINAHL, Embase, Medline Complete, and PubMed were searched. The search terms were "assess" AND "frailty" AND "screening" AND ("frail elderly" OR "elderly"). Results : A total of 539 articles were identified by the search and 11 articles were selected. Frailty occurs due to the depressed function of multidimensional factors, and a frail elderly person is defined as one at high risk of health degeneration, functional impairment, and occurrence of disability, and having a high level of threat to life. Seven tools were selected from 11 articles. The most frequently used tool was the frailty phenotype, which was used in five articles (45.4%). The identified components of frailty were physical, activity participation, nutrition, psychological, social, overall health, and age. Conclusion : The results confirmed the definition and components of frailty. This study is expected to contribute to the future development of standardized evaluation tools for screening frail elderly individuals and intervention programs for the management of the frail elderly.

VENTOS-Based Platoon Driving Simulations Considering Variability (가변성을 고려하는 VENTOS 기반 군집 자율주행 시뮬레이션)

  • Kim, Youngjae;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • In platoon driving, several autonomous vehicles communicate to exchange information with each other and drive in a single cluster. The platooning technology has various advantages such as increasing road traffic, reducing energy consumption and pollutant emission by driving in short distance between vehicles. However, the short distance makes it more difficult to cope with an emergency accident, and accordingly, it is difficult to ensure the safety of platoon driving, which must be secured. In particular, the unexpected situation, i.e., variability that may appear during driving can adversely affect the safety of platoon driving. Because such variability is difficult to predict and reproduce, preparing safety guards to prevent risks arising from variability is a challenging work. In this paper, we studied a simulation method to avoid the risk due to the variability that may occur while platoon driving. In order to simulate safe platoon driving, we develop diverse scenarios considering the variability, design and apply safety guards to handle the variability, and extends the detail functions of VENTOS, an open source platooning simulator. Based on the simulation results, we have confirmed that the risks caused form the variability can be removed, and safe platoon driving is possible. We believe that our simulation approach will contribute to research and development to ensure safety in platoon driving.

Design and Implementation of a Hardware Accelerator for Marine Object Detection based on a Binary Segmentation Algorithm for Ship Safety Navigation (선박안전 운항을 위한 이진 분할 알고리즘 기반 해상 객체 검출 하드웨어 가속기 설계 및 구현)

  • Lee, Hyo-Chan;Song, Hyun-hak;Lee, Sung-ju;Jeon, Ho-seok;Kim, Hyo-Sung;Im, Tae-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1331-1340
    • /
    • 2020
  • Object detection in maritime means that the captain detects floating objects that has a risk of colliding with the ship using the computer automatically and as accurately as human eyes. In conventional ships, the presence and distance of objects are determined through radar waves. However, it cannot identify the shape and type. In contrast, with the development of AI, cameras help accurately identify obstacles on the sea route with excellent performance in detecting or recognizing objects. The computer must calculate high-volume pixels to analyze digital images. However, the CPU is specialized for sequential processing; the processing speed is very slow, and smooth service support or security is not guaranteed. Accordingly, this study developed maritime object detection software and implemented it with FPGA to accelerate the processing of large-scale computations. Additionally, the system implementation was improved through embedded boards and FPGA interface, achieving 30 times faster performance than the existing algorithm and a three-times faster entire system.

A Study on the Effects of Reading Education Using Book-Coding (북코딩의 독서교육 효과에 관한 연구)

  • Ji, Hyoun-Ah;Cho, Miah
    • Journal of Korean Library and Information Science Society
    • /
    • v.52 no.2
    • /
    • pp.145-166
    • /
    • 2021
  • The study was aimed at verifying the effectiveness of Book-Coding reading education as a reader activity of older elementary school children at a time when high-dimensional thinking abilities were formed. To this end, 30 fifth-grade children of N Elementary School in N-si, Gyeonggi-do, comprised of 15 students from a reading education program using Book-Coding, and 15 students from a reading comprehension program, and applied the reading education program over a total of 12 sessions. The main results of the study are summarized as follows. First, when the effects of the convergence reading education program using Book-Coding on the logical thinking ability of the students in the upper grades in the elementary school were analyzed, all the six sub-factors of logical thinking ability, that is, conservation logic, proportional logic, variable controlling logic, probabilistic logic, correlational inference logic, and combinational logic, were proved to have statistically more meaningful difference than the group writing a book report. Second, the analysis result of the influence of the convergence reading education program using Book-Coding on the creativity of the students in the upper grades of the elementary school showed that all the 13 elements of curiosity, persistence, effectiveness, independence, adventurousness, openness, knowledge, imagination, originality, sensitivity, fluency, flexibility, and accuracy were statistically meaningfully different compared to the book report group. Third, when it was analyzed how the convergence reading education program using Book-Coding affected the creative personality of the elementary school students, all the six factors of curiosity, task commitment, independence, awareness of risk, and openness of thinking, and aesthetics were found out to have a statistically more meaningful difference than the group that wrote a book report.

Reinforcing Effect of Buildings Considering Load Distribution Characteristics of a Pre-compressed Micropile (선압축 보강마이크로파일의 하중분담 특성을 고려한 건물 보강효과에 대한 연구)

  • Lee, Kwang Hoon;Park, Yong Chan;Moon, Sung Jin;You, Kwang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.825-836
    • /
    • 2022
  • Micropiles can be used to support additional load in extended building structures. However, their use brings about a risk of exceeding the bearing capacity of existing piles. In this study, pre-compression was applied to distribute the load of an existing building to micropiles, and an indoor loading test was performed to confirm the structural applicability of a wedge-type anchorage device designed to improve its capacity. According to the test results, the maximum strain of the anchorage device was 0.63 times that of the yield strain, and the amount of slip generated at the time of anchorage was 0.11 mm, satisfying structural standards. In addition, using MIDAS GTS, a geotechnical finite element analysis software, the effect of the size of the pre-compression, the thickness of the soil layer, and the ground conditions around the tip on the reaction force of the existing piles and micropiles were analyzed. From the numerical analysis, as the size of the pre-compression load increased, the reaction force of the existing pile decreased, resulting in a reduction rate of up to 36 %. In addition, as the soil layer increased by 5 m, the reduction rate decreased by 4 %, and when the ground condition at the tip of the micropile was weathered rock, the reduction rate increased by 14 % compared with that of weathered soil.

Numerical Study on the Effect of Area Changes in Air Inlets and Vent Ports on the Ventilation of Leaking Hydrogen (급·배기구 면적 변화가 누출 수소 환기에 미치는 영향에 관한 수치해석적 연구)

  • Lee, Chang-Yong;Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • Hydrogen has reduced greenhouse gas (GHG) emissions, the main cause of global warming, and is emerging as an eco-friendly energy source for ships. Hydrogen is a substance with a lower flammability limit (LFL) of 4 to 75% and a high risk of explosion. To be used for ships, it must be sufficiently safe against leaks. In this study, we analyzed the effect of changes in the area of the air inlet / vent port on the ventilation performance when hydrogen leaks occur in the hydrogen tank storage room. The area of the air inlet / vent port is 1A = 740 mm × 740 mm, and the size and position can be easily changed on the surface of the storage chamber. Using ANSYS CFX ver 18.1, which is a CFD commercial software, the area of the air inlet / vent port was changed to 1A, 2A, 3A, and 5A, and the hydrogen mole fraction in the storage chamber when the area changed was analyzed. Consequently, the increase in the area of the air inlet port further reduced the concentration of the leaked hydrogen as compared with that of the vent port, and improved the ventilation performance of at least 2A or more from the single air inlet port. As the area of the air inlet port increased, hydrogen was uniformly stratified at the upper part of the storage chamber, but was out of the LFL range. However, simply increasing the area of the vent port inadequately affected the ventilation performance.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).