• Title/Summary/Keyword: Soft rot resistance

Search Result 38, Processing Time 0.032 seconds

Preliminary Study of the Leaching Resistance of Boron from Borate Treated Wood by the Dual Treatment with Water-Repellent Preservative and Methyl Metacrylate (방부성(防腐性) 발수제(撥水劑)와 methyl metacrylate 이중처리(二重處理)에 의(依)한 붕소화합물(硼素化合物) 처리재(處理材)로부터 붕소(硼素)의 용탈(溶脫) 저항성(抵抗性)에 관(關)한 기초연구(基礎硏究))

  • Kim, Gyu-Hyeok;Ra, Jong-Bum
    • Journal of the Korean Wood Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.13-18
    • /
    • 1994
  • Sapwood samples of pitch pine were treated with disodium octaborate alone by dip-diffusion, or in combination with water-repellent preservative(WRP) and methyl metacrylate(MMA). Treated samples were subjected to an accelerated leaching test for determining the improvement of leaching resistance and to soft rot and mold tests for evaluating the increase in bioefficacy, due to the addition of WRP and MMA applied as a second treatment. The addition of WRP and MMA retarded leaching of boron to some extent from treated samples and this retardation can be explained by improved water repellency of WRP and MMA treated samples. Borate /WRP and borate /MMA systems will not qualify borate treated wood for ground and fresh water contact use but may improve performance of borate treated wood in above-ground applications not subjected to continuous wetting conditions. Bioefficacy against soft rot fungi and mold fungi was improved by a second treatment with WRP. However, improvement in the performance of borate /MMA systems was not observed. Considering improvement in both resistance of leaching and bioefficacy against micro fungi by the treatment of WRP and MMA, simultaneously, the dual treatment of borate treated wood by MMA containing co-biocides might be believed as an ideal treatment system.

  • PDF

Development of an Efficient Bioassay Method for Testing Resistance to Bacterial Soft Rot of Radish (효과적인 무 무름병 저항성 검정법 개발)

  • Lee, Soo Min;Choi, Yong Ho;Jang, Kyoung Soo;Kim, Hun;Lee, Seon-Woo;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.193-201
    • /
    • 2018
  • Pectobacterium carotovorum subsp. carotovorum (Pcc) causes bacterial soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates. This study was conducted to establish an efficient screening method for resistant cultivars of radish (Raphanus sativus) to bacterial soft rot. Resistance degrees of 60 commercial radish cultivars to the Pcc KACC 10421 isolate were investigated. For further study, six radish cultivars (Awooriwoldong, YR Championyeolmu, Jeonmuhumu, Bitgoeunyeolmu, Sunbongaltari, Housecheongok) showing different level of resistance to the bacterium were selected. The development of bacterial soft rot on the cultivars was tested according to several conditions such as incubation temperature, seedling stage of radish, inoculum concentration to develop the disease. On the basis of the results, we suggest that an efficient screening method for resistant radish to Pcc is to inoculate twenty-day-old seedlings with a bacterial suspension of Pcc at a concentration of $8{\times}10^5cfu/ml$ and then to cultivate the plants in a growth room at $25^{\circ}C$ and 80% RH with 12-hour light per day.

Assessment of the resistance of bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum KACC 21701 in Kimchi cabbage genetic resources

  • Parthiban Subramanian;Ho Chul Ko;Seong-Hoon Kim;Jae Eun Lee;Aejin Hwang;Bichsaem Kim;Yoon-Jung Lee;Awraris Derbie Assefa;Onsook Hur;Nayoung Ro;Jung Sook Sung;Ju Hee Rhee;Ho-Sun Lee;Bum-Soo Hahn
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.4
    • /
    • pp.433-441
    • /
    • 2022
  • Bacterial phytopathogen Pectobacterium causes soft rot disease in several vegetable crops globally, resulting in heavy agricultural losses at both the pre and postharvest stages. The present work was carried out to screen Kimchi cabbage genetic resources conserved at the National Agrobiodiversity Center, Rural Development Administration, Korea, for resistance against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum KACC 21701 over a period of three years (from 2020 to 2022). Infection of the phytopathogen was carried out at four-leaf stage and for each accession, twenty-five plants per germplasm were infected with KACC 21701. Kimchi cabbage cultivars Wangmatbaechu, Seoulbaechu, and CR Kiyoshi were used as control. Seven-days post-infection, the Disease Index (DI) values were manually recorded from zero to four, zero matched perfectly heathy plants and four completely dead plants. The 682 accessions of Kimchi cabbage exhibited varying degrees of disease resistance to KACC 21701 and thirty accessions, exhibiting a DI≤2, were considered for replication studies. During the replication studies, four landrace germplasms (IT102883, IT120036, IT120044, and IT120048) and one cultivar(IT187919) were confirmed to be moderately susceptible to KACC 21701. Results of the preliminary screening as well as replication studies were documented for the all the 682 germplasms. Addition of such information to the passport data of stored germplasms might serve as potential bio-resource for future breeders and researchers to develop resistant varieties or study the mechanisms involved in resistance of plants to such phytopathogen.

Micromorphological and Chemical Characteristics of Cengal (Neobalanocarpus heimii) Heartwood Decayed by Soft Rot Fungi

  • Kim, Yoon Soo;Singh, Adya P.;Wong, Andrew H.H.;Eom, Tae-Jin;Lee, Kwang Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.68-77
    • /
    • 2006
  • The heartwood of cengal (Neobalanocarpus heimii) is known to have a high degree of decay resistance by virtue of its high extractive content. After 30 years in ground contact an utility pole of this tropical hardwood was found to be degraded only in the surface layers by cavity-forming soft rot fungi. The present work was undertaken 1) to characterize the degradation of cengal heartwood from the aspect of ultrastructure and chemistry and 2) to investigate the correlation between soft rot decay and its extractive microdistribution in wood tissues. The chemical analysis of cengal heartwood revealed the presence of a high amount of extractives as well as lignin. The wood contained a relatively high amount of condensed lignin and the guaiacyl units. Microscopic observations revealed that vessels, fibers and parenchyma cells (both ray and axial parenchyma) all contained extractives in their lumina, but in variable amounts. The lumina of fibers and most axial parenchyma were completely or almost completely filled with the extractives. TEM micrographs showed that cell walls were also impregnated with extractives and that pit membranes connecting parenchyma cells were well coated and impregnated with extractives. However, fungal hyphae were present in the extractive masses localized in cell lumina, and indications were that the extractives did not completely inhibit fungal growth. The extent of cell wall degradation varied with tissue types. The fibers appeared to be more susceptible to decay than vessels and parenchyma. Middle lamella was the only cell wall region which remained intact in all cell types which were severely degraded. The microscopic observations suggested a close correlation between extractive microdistribution and the pattern and extent of cell wall degradation. In addition to the toxicity to fungi, the physical constraint of the extractive material present in cengal heartwood cells is likely to have a profound effect on the growth and path of invasion of colonizing fungi, thus conferring protection to wood by restricting fungal entry into cell walls. The presence of relatively high amount of condensed lignin is also likely to be a factor in the resistance of cengal heartwood to soft rot decay.

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo;Ahsan, S.M.
    • The Plant Pathology Journal
    • /
    • v.38 no.1
    • /
    • pp.33-45
    • /
    • 2022
  • To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

Breeding of a Multi-flowering and Early-flowering White Calla Lily Cultivar 'White Cutie' Resistant to Soft Rot Disease (절화수량이 우수한 무름병 저항성 조생 백색칼라 'White Cutie' 육성)

  • Joung, Hyang Young;Cho, Hae Ryong;Rhee, Ju Hee;Shin, Hak Ki;Park, Sang Kun
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.618-623
    • /
    • 2015
  • The new white calla lily (Zantedeschia aethiopica) cultivar 'White Cutie' was bred at the National Institute of Horticultural & Herbal Science (NIHHS) in 2011. 'Childsiana' showing the multi-flowering characteristic and 'Wedding March' resistant to soft rot disease were artificially crossed in 2004. Of the progeny, 'White Cutie' was selected specifically for use in cut flower production after investigation over seven years (2005 to 2011) of genetic and phenotypic characteristics, resistance against soft rot, and customer preference regarding the culture vigor and post-harvest quality. 'White Cutie' was early flowering (85.6 days to flowering) with white flowers (RHS W155C), although it had a mid-sized flower in which spathe height and width were 8.6 cm and 8.7 cm, respectively. It was multi-flowering (6.2 flowers per plant) and produced a very high number of cormels (13.4 per plant). Furthermore, it was resistant to soft rot disease.

Disease-resistant Transgenic Arabidopsis Carrying the expI Gene from Pectobacterium carotovorum subsp. carotovorum SL940

  • Lee, Joo-Hee;Hong, Ja-Bin;Hong, Sang-Bin;Choi, Min-Seon;Jeong, Ki-Yong;Park, Hyoung-Joon;Hwang, Duk-Ju;Lee, Seung-Don;Ra, Dong-Soo;Heu, Sung-Gi
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.183-190
    • /
    • 2008
  • Plant-cell-wall-degrading enzymes (PCWDEs) of Pectobacterium carotovorum subsp. carotovorum are the key virulence factor in pathogenesis of soft rot disease of vegetables. The production of PCWDEs is controlled in a cell density dependent manner to avoid the premature production of PCWDEs and subsequent activation of plant defense. N-oxoacyl-homoserine lactone (OHL) is essential for quorum sensing in the soft rot pathogen and the expI gene is responsible for OHL production. The ExpI homolog isolated from P. carotovorum subsp. carotovorum SL940 had 94% identity with ExpI of E. carotovora subsp. carotovora scc3193 and 74% identity with Carl of E. carotovora subsp. atroseptica. The transgenic plants that express exp I uner the control of CaMV35S promoter were able to produce diffusible OHL. Transgenic plants producing OHL were very resistant to the infection of P. carotovorum subsp. carotovorum. Since the PR1 gene was strongly induced and NPR1 and NPR4 were induced weakly in transgenic plants compared to the wild type, salicylic acid-dependent pathways is likely involved in the resistance to the soft rot pathogen P. carotovorum subsp. carotovorum in ExpI transgenic plants.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Screening of Disease Resistance of Chinese Cabbage Cultivars and Lines to Bacterial Soft Rot (배추 무름병에 대한 저항성 품종 검정)

  • Chung, Eun-Kyoung;Zhang, Xuan-Zhe;Choi, Bo-Ra;Lee, Eun-Ju;Yeoung, Young-Rog;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.9 no.1
    • /
    • pp.39-41
    • /
    • 2003
  • Bacterial soft rot by Erwinia carotovora subsp. carotovora is one of the diseases causing the biggest damages in Chinese cabbage cultivation. This study was conducted to evaluate disease resistance of Chinese cabbage cultivars and breeding lines to E. carotovora subsp. carotovora by new inoculation method, mineral oil inoculation method, inoculating 10 ml of the mixture (4:1, v/v) of bacterial suspension and mineral oil on the central bases of Chinease cabbage seedling. Total 43 Chinese cabbage cultivars and lines obtained from 3 domestic seed companies and universities were screened for disease resistance using the above mentioned inoculation method. This screening test showed that Chinese cabbage C3-26, C3-28, C3-29 and C29-51-51-53 lines were resistant, Gangta, Gumchonyealgali, Mini, DB50, Jibu, Pyungchng, Sanchon and Yellow King No.2 cultivars were susceptible, and the others were moderate resistant.