DOI QR코드

DOI QR Code

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot

  • Choi, Hyong Woo (Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University) ;
  • Ahsan, S.M. (Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University)
  • Received : 2021.12.26
  • Accepted : 2022.01.11
  • Published : 2022.02.01

Abstract

To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.

Keywords

Acknowledgement

This work was supported by a Research Grant of Andong National University.

References

  1. Ab Rahman, S. F. S., Singh, E., Pieterse, C. M. J. and Schenk, P. M. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267:102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
  2. Abdallah, R. A. B., Jabnoun-Khiareddine, H., Mejdoub-Trabelsi, B. and Daami-Remadi, M. 2015. Soil-borne and compostborne Aspergillus species for biologically controlling postharvest diseases of potatoes incited by Fusarium sambucinum and Phytophthora erythroseptica. Plant Pathol. Microbiol. 6:10.
  3. Abiona, D. L., Onawumi, O. O. E. and Oladoye, S. O. 2019. Analysis of oil fraction from Crinum jagus bulb and its antibacterial activity. In: 13th PARIS Int'l Conference on Agricultural, Chemical, Biological & Environmental Sciences (PACBES-19), eds. by K. Maeda and L. Ma, pp. 64-67. PACBES-19, Paris, France.
  4. Abri, Kuswinanti, T., Sengin, E. L. and Sjahrir, R. 2015. Production of indole acetic acid (IAA) hormone from fungal isolates collected from rhizosphere of aromatic rice in Tana Toraja. Int. J. Curr. Res. Biosci. Plant Biol. 2:198-201.
  5. Ahmad, S., Alam, O., Naim, M. J., Shaquiquzzaman, M., Alam, M. M. and Iqbal, M. 2018. Pyrrole: an insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem. 157:527-561. https://doi.org/10.1016/j.ejmech.2018.08.002
  6. Aissaoui, N., Mahjoubi, M., Nas, F., Mghirbi, O., Arab, M., Souissi, Y., Hoceini, A., Masmoudi, A. S., Mosbah, A., Cherif, A. and Klouche-Khelil, N. 2019. Antibacterial potential of 2,4-di-tert-butylphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. Geomicrobiol. J. 36:53-62. https://doi.org/10.1080/01490451.2018.1503377
  7. Akshatha, J. V., Prakash, H. S. and Nalini, M. S. 2016. Actinomycete endophytes from the ethno medicinal plants of Southern India: antioxidant activity and characterization studies. J. Biol. Act. Prod. Nat. 6:166-172.
  8. Al-Shibli, H., Dobretsov, S., Al-Nabhani, A., Maharachchikumbura, S. S. N., Rethinasamy, V. and Al-Sadi, A. M. 2019. Aspergillus terreus obtained from mangrove exhibits antagonistic activities against Pythium aphanidermatum-induced damping-off of cucumber. PeerJ 7:e7884. https://doi.org/10.7717/peerj.7884
  9. Arumugam, N., Raghunathan, R., Almansour, A. I. and Karama, U. 2012. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 22:1375-1379. https://doi.org/10.1016/j.bmcl.2011.12.061
  10. Bajagain, R., Park, Y. and Jeong, S.-W. 2018. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci. Total Environ. 626:1236-1242. https://doi.org/10.1016/j.scitotenv.2018.01.212
  11. Baltenneck, J., Reverchon, S. and Hommais, F. 2021. Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9:239. https://doi.org/10.3390/microorganisms9020239
  12. Barupal, T., Meena, M. and Sharma, K. 2019. Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC-MS analysis. Biotechnol. Rep. 23:e00335. https://doi.org/10.1016/j.btre.2019.e00335
  13. Belghit, S., Driche, E. H., Bijani, C., Zitouni, A., Sabaou, N., Badji, B. and Mathieu, F. 2016. Activity of 2,4-Di-tertbutylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. J. Mycol. Med. 26:160-169. https://doi.org/10.1016/j.mycmed.2016.03.001
  14. Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. and Sharma, P. 2015. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5:15233-15266. https://doi.org/10.1039/C4RA15710A
  15. Bhosale, J. D., Shirolkar, A. R., Pete, U. D., Zade, C. M., Mahajan, D. P., Hadole, C. D., Pawar, S. D., Patil, U. D., Dabur, R. and Bendre, R. S. 2013. Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives. J. Pharm. Res. 7:582-587. https://doi.org/10.1016/j.jopr.2013.07.022
  16. Bodah, E. T. 2017. Root rot diseases in plants: a review of common causal agents and management strategies. Agric. Res. Technol. Open Access J. 5:555661.
  17. Borisade, O. A., Uwaidem, Y. I. and Salami, A. E. 2017. Preliminary report on Fusarium oxysporum f. sp. lycopersici (Sensu lato) from some tomato producing agroecological areas in Southwestern Nigeria and susceptibility of F1-resistant tomato hybrid (F1-Lindo) to infection. Annu. Res. Rev. Biol. 18:1-9.
  18. Bouhlal, F., Aqil, Y., Chamkhi, I., Belmaghraoui, W., Labjar, N., Hajjaji, S. E., Benabdellah, G. A., Aurag, J., Lotfi, E. M. and Mahi, M. E. 2020. GC-MS analysis, phenolic compounds quantification, antioxidant, and antibacterial activities of the hydro-alcoholic extract of spent coffee grounds. J. Biol. Act. Prod. Nat. 10:325-337.
  19. Brookie, K. L., Best, G. I. and Conner, T. S. 2018. Intake of raw fruits and vegetables is associated with better mental health than intake of processed fruits and vegetables. Front. Psychol. 9:487. https://doi.org/10.3389/fpsyg.2018.00487
  20. Campo, R., Giustra, M. G., De Marchis, M., Freni, G. and Di Bella, G. 2017. Characterization and treatment proposals of shipboard slop wastewater contaminated by hydrocarbons. Water 9:581. https://doi.org/10.3390/w9080581
  21. Cating, R. A., Hong, J. C., Palmateer, A. J., Stiles, C. M. and Dickstein, E. R. 2008. First report of bacterial soft rot on Vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Dis. 92:977.
  22. Cazar, M. E., Schmeda-Hirschmann, G. and Astudillo, L. 2005. Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J. Microbiol. Biotechnol. 21:1067-1075. https://doi.org/10.1007/s11274-004-8150-5
  23. Chakraborty, N. and Acharya, K. 2017. "NO way"! says the plant to abiotic stress. Plant Gene 11:99-105. https://doi.org/10.1016/j.plgene.2017.05.001
  24. Dharni, S., Sanchita, Maurya, A., Samad, A., Srivastava, S. K., Sharma, A. and Patra, D. D. 2014. Purification, characterization, and in vitro activity of 2,4-Di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J. Agric. Food Chem. 62:6138-6146. https://doi.org/10.1021/jf5001138
  25. Domagala, A., Jarosz, T. and Lapkowski, M. 2015. Living on pyrrolic foundations: advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem. 100:176-187. https://doi.org/10.1016/j.ejmech.2015.06.009
  26. El-hawary, S. S., Moawad, A. S., Bahr, H. S., Abdelmohsen, U. R. and Mohammed, R. 2020. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 10:22058-22079. https://doi.org/10.1039/d0ra04290k
  27. Frisvad, J. C. and Larsen, T. O. 2015. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 99:7859-7877. https://doi.org/10.1007/s00253-015-6839-z
  28. Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Correa, B. O., da Silva Brasil, M. and Zanoelo, F. F. 2021. Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolandia region, Brazil. Rhizosphere 18:100332. https://doi.org/10.1016/j.rhisph.2021.100332
  29. Ghosh, S. K., Banerjee, S. and Sengupta, C. 2017. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J. Biopestic. 10:105-112.
  30. Gordon, T. R. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 55:23-39. https://doi.org/10.1146/annurev-phyto-080615-095919
  31. Hamouda, R. A. E. F., Sorour, N. M. and Yeheia, D. S. 2016. Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int. Biodeterior. Biodegrad. 112:128-134. https://doi.org/10.1016/j.ibiod.2016.05.001
  32. Hossain, M. M., Sultana, F. and Islam, S. 2017. Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant-microbe interactions in agro-ecological perspectives, eds. by D. Singh, H. Singh and R. Prabha, pp. 135-191. Springer, Singapore.
  33. Hugouvieux-Cotte-Pattat, N., Condemine, G. and Shevchik, V. E. 2014. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. Rep. 6:427-440. https://doi.org/10.1111/1758-2229.12166
  34. Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G. and Yousaf, S. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153:80-88. https://doi.org/10.1016/j.envexpbot.2018.05.012
  35. Jana, G. H., Jain, S., Arora, S. K. and Sinha, N. 2005. Synthesis of some diguanidino 1-methyl-2,5-diaryl-1H-pyrroles as antifungal agents. Bioorg. Med. Chem. Lett. 15:3592-3595. https://doi.org/10.1016/j.bmcl.2005.05.080
  36. Javed, A., Shah, A. H., Hussain, A., Shinwari, Z. K., Khan, S. A., Khan, W. and Jan, S. A. 2020. Potential of endophytic fungus Aspergillus terreus as potent plant growth promoter. Pak. J. Bot. 52:1083-1086.
  37. Joncy, A. M., Angappan, K., Nakkeeran, S., Tilak, M. and Umapathy, G. 2019. Exploration of antifungal metabolites of Aspergillus terreus (ENF12), an endophytic fungus isolated from mulberry (Morus Indica L.) leaf. Curr. J. Appl. Sci. Technol. 38:1-15.
  38. Kumar, N. V., Rajam, K. S. and Rani, M. E. 2017. Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. Appl. Sci. 6:2692-2701. https://doi.org/10.20546/ijcmas.2017.611.317
  39. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  40. Lenartowicz, P., Kafarski, P. and Lipok, J. 2015. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus. Biodegradation 26:65-76. https://doi.org/10.1007/s10532-014-9716-z
  41. Li, W., Long, Y., Mo, F., Shu, R., Yin, X., Wu, X., Zhang, R., Zhang, Z., He, L., Chen, T. and Chen, J. 2021. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata. J. Fungi 7:937. https://doi.org/10.3390/jof7110937
  42. Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S. and Hu, S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci. Rep. 6:25313. https://doi.org/10.1038/srep25313
  43. Liu, M., Sun, W., Wang, J., He, Y., Zhang, J., Li, F., Qi, C., Zhu, H., Xue, Y., Hu, Z. and Zhang, Y. 2018. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. Chem. 80:525-530. https://doi.org/10.1016/j.bioorg.2018.06.029
  44. Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A. and Charkowski, A. O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150-1163. https://doi.org/10.1094/PHYTO-97-9-1150
  45. Mahmoud, A.-L. E. and Abd-Alla, M. H. 2001. Siderophore production by some microorganisms and their effect on Bradyrhizobium- mung bean symbiosis. Int. J. Agric. Biol. 3:157-162.
  46. Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Cunha Tarouco, P., Weyrauch, P., Dong, X. and Himmelberg, A. M. 2016. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. 26:92-118.
  47. Melappa, G., Shilpashree, C. B., Channabasava and Prakash, B. 2017. In vitro antimitotic, antiproliferative and GC-MS studies on the methanolic extract of endophytic fungi, penicillium species of Tabebuia argentea bur & k. Sch. Farmacia 65:301-309.
  48. Mosunova, O., Navarro-Munoz, J. C. and Collemare, J. 2020. The biosynthesis of fungal secondary metabolites: from fundamentals to biotechnological applications. In: Reference module in life sciences, ed. by B. D. Roitberg, pp. 1-19. Elseiver Inc., London, UK.
  49. Murali, M., Naziya, B., Ansari, M. A., Alomary, M. N., AlYahya, S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amruthesh, L. N. 2021. Bioprospecting of rhizosphere-resident fungi: their role and importance in sustainable agriculture. J. Fungi 7:314. https://doi.org/10.3390/jof7040314
  50. Nahar, K. and Ullah, S. M. 2012. Morphological and physiological characters of tomato (Lycopersicon esculentum Mill) cultivars under water stress. Bangladesh J. Agric. Res. 37:355-360. https://doi.org/10.3329/bjar.v37i2.11240
  51. Nenwani, V., Doshi, P., Saha, T. and Rajkumar, S. 2010. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1:009-014.
  52. Ortega, H. E., Torres-Mendoza, D., Caballero E, Z. and Cubilla- Rios, L. 2021. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi 7:570. https://doi.org/10.3390/jof7070570
  53. Ozimek, E., Jaroszuk-Scisel, J., Bohacz, J., Kornillowicz-Kowalska, T., Tyskiewicz, R., Slomka, A., Nowak, A. and Hanaka, A., 2018. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 19:3218. https://doi.org/10.3390/ijms19103218
  54. Padmavathi, A. R., Abinaya, B. and Pandian, S. K. 2014. Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111-1122. https://doi.org/10.1080/08927014.2014.972386
  55. Park, B. R., Son, H. J., Park, J. H., Kim, E. S., Heo, S. J., Youn, H. R., Koo, Y. M., Heo, A. Y., Choi, H. W., Sang, M. K., Lee, S.-W., Choi, S. H. and Hong, J. K. 2021. Chemical fungicides and Bacillus siamensis H30-3 against fungal and oomycete pathogens causing soil-borne strawberry diseases. Plant Pathol. J. 37:79-85. https://doi.org/10.5423/PPJ.NT.12.2020.0232
  56. Park, H.-S., Jun, S.-C., Han, K.-H., Hong, S.-B. and Yu, J.-H. 2017. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv. Appl. Microbiol. 100:161-202. https://doi.org/10.1016/bs.aambs.2017.03.001
  57. Patel, D., Patel, S., Thakar, P. and Saraf, M. 2017. Siderophore producing Aspergillus spp. as bioinoculant for enhanced growth of mung bean. Int. J. Adv. Agric. Sci. Technol. 6:111-120.
  58. Pedron, J., Schaerer, S., Kellenberger, I. and Van Gijsegem, F. 2021. Early emergence of Dickeya solani revealed by analysis of Dickeya diversity of potato blackleg and soft rot causing pathogens in Switzerland. Microorganisms 9:1187. https://doi.org/10.3390/microorganisms9061187
  59. Perombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51:1-12. https://doi.org/10.1046/j.0032-0862.2001.Short title.doc.x
  60. Potrykus, M., Golanowska, M., Sledz, W., Zoledowska, S., Motyka, A., Kolodziejska, A., Butrymowicz, J. and Lojkowska, E. 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis. 100:408-417. https://doi.org/10.1094/PDIS-04-15-0439-RE
  61. Raimondi, M. V., Cascioferro, S., Schillaci, D. and Petruso, S. 2006. Synthesis and antimicrobial activity of new brominerich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem. 41:1439-1445. https://doi.org/10.1016/j.ejmech.2006.07.009
  62. Rajaofera, M. J. N., Wang, Y., Dahar, G. Y., Jin, P., Fan, L., Xu, L., Liu, W. and Miao, W. 2019. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pestic. Biochem. Physiol. 156:170-176. https://doi.org/10.1016/j.pestbp.2019.02.019
  63. Ramirez, V., Martinez, J., Bustillos-Cristales, M. D. R., Cataneda- Antonio, D., Munive, J.-A. and Baez, A. 2021. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132:470-482.
  64. Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A. and Casas- Flores, S. 2011. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J. Microbiol. Biotechnol. 21:686-696. https://doi.org/10.4014/jmb.1101.01012
  65. Samson, R., Legendre, J. B. and Christen, R., Fischer-Le Saux M., Achouak W. and Gardan L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al., 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 55:1415-1427. https://doi.org/10.1099/ijs.0.02791-0
  66. Sebesta, M., Urik, M., Bujdos, M., Kolencik, M., Vavra, I., Dobrocka, E., Kim, H. and Matus, P. 2020. Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J. Fungi 6:210. https://doi.org/10.3390/jof6040210
  67. Shaaban, M., Ghani, M. A. and Issa, M. Y. 2021. New naturally occurring compounds from Sarcophyton trocheliophorum. Biointerface Res. Appl. Chem. 12:2285-2331. https://doi.org/10.33263/BRIAC122.22852331
  68. Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35:178-187. https://doi.org/10.5423/PPJ.NT.08.2018.0159
  69. Singh, V. K., Singh, H. B. and Upadhyay, R. S. 2017. Role of fusaric acid in the development of 'Fusarium wilt' symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiol. Biochem. 118:320-332. https://doi.org/10.1016/j.plaphy.2017.06.028
  70. Slawiak, M., van Beckhoven, J. R., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G. and van der Wolf, J. M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125:245-261. https://doi.org/10.1007/s10658-009-9479-2
  71. Srinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Nayakaa, S. C. and Srivastava, R. K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity-a review. Saudi J. Biol. Sci. 26:1315-1324. https://doi.org/10.1016/j.sjbs.2019.06.002
  72. Thach, O., Mielczarek, M., Ma, C., Kutty, S. K., Yang, X., Black, D. S., Griffith, R., Lewis, P. J. and Kumar, N. 2016. From indole to pyrrole, furan, thiophene and pyridine: search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorg. Med. Chem. 24:1171-1182. https://doi.org/10.1016/j.bmc.2016.01.040
  73. Toth, I. K., Van der Wolf, J. M., Saddler, G., Lojkowska, E., Helias, V., Pirhonen, M., Tsror, L. and Elphinstone, J. G. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 60:385-399. https://doi.org/10.1111/j.1365-3059.2011.02427.x
  74. Tsukagoshi, N., Kobayashi, T. and Kato, M. 2001. Regulation of the amylolytic and (hemi-) cellulolytic genes in aspergilli. J. Gen. Appl. Microbiol. 47:1-19. https://doi.org/10.2323/jgam.47.1
  75. van der Wolf, J. M., Nijhuis, E. H., Kowalewska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waleron, M., de Vos, P., Cleenwerck, I., Pirhonen, M., Garlant, L., Helias, V., Pothier, J. F., Pfluger, V., Duffy, B., Tsror, L. and Manulis, S. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 64:768-774. https://doi.org/10.1099/ijs.0.052944-0
  76. Varsha, K. K., Devendra, L., Shilpa, G., Priya, S., Pandey, A. and Nampoothiri, K. M. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 211:44-50. https://doi.org/10.1016/j.ijfoodmicro.2015.06.025
  77. Varshney, H., Ahmad, A., Rauf, A., Husain, F. M. and Ahmad, I. 2017. Synthesis and antimicrobial evaluation of fatty chain substituted 2,5-dimethyl pyrrole and 1,3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc. 21(Suppl 1):S394-S402. https://doi.org/10.1016/j.jscs.2014.04.008
  78. Vassileva, M., Malusa, E., Eichler-Lobermann, B. and Vassilev, N. 2020. Aspegillus terreus: from soil to industry and back. Microorganisms 8:1655. https://doi.org/10.3390/microorganisms8111655
  79. Vegh, A., Nemethy, Z., Salamon, P., Mandoki, Z. and Palkovics, L. 2014. First report of bacterial wilt on chrysanthemum caused by Dickeya chrysanthemi (syn. Erwinia chrysanthemi) in Hungary. Plant Dis. 98:988.
  80. Viszwapriya, D., Prithika, U., Deebika, S., Balamurugan, K. and Pandian, S. K. 2016. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol. Res. 191:19-31. https://doi.org/10.1016/j.micres.2016.05.010
  81. Wang, M.-Z., Xu, H., Liu, T.-W., Feng, Q., Yu, S.-J., Wang, S.-H. and Li, Z.-M. 2011. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem. 46:1463-1472. https://doi.org/10.1016/j.ejmech.2011.01.031
  82. Wang, X., Li, C., Wang, M., Zhao, T. and Li, W. 2020. Bifunctional microcapsules with n-octadecane/thyme oil core and polyurea shell for high-efficiency thermal energy storage and antibiosis. Polymers 12:2226. https://doi.org/10.3390/polym12102226
  83. Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.- M., Kim, J.-G. and Lee, I.-J. 2015. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 10:280-287. https://doi.org/10.1080/17429145.2015.1079743
  84. White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
  85. Yu, R., Liu, J., Wang, Y., Wang, H. and Zhang, H. 2021. Aspergillus niger as a secondary metabolite factory. Front. Chem. 9:701022. https://doi.org/10.3389/fchem.2021.701022
  86. Zaman, K. A. U., Hu, Z., Wu, X., Hou, S., Saito, J., Kondratyuk, T. P., Pezzuto, J. M. and Cao, S. 2020. NF-κB inhibitory and antibacterial helvolic and fumagillin derivatives from Aspergillus terreus. J. Nat. Prod. 83:730-737. https://doi.org/10.1021/acs.jnatprod.9b01190
  87. Zhang, D., Gong, C. and Wei, H. 2008. Chemical constituents of the culture broth of Paenibacillus polymyxa HY96-2. J. East China Univ. Sci. Technol. 34:71.
  88. Zhao, F., Wang, P., Lucardi, R. D., Su, Z. and Li, S. 2020. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 12:35. https://doi.org/10.3390/toxins12010035