Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2021.0187

Biocontrol Activity of Aspergillus terreus ANU-301 against Two Distinct Plant Diseases, Tomato Fusarium Wilt and Potato Soft Rot  

Choi, Hyong Woo (Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University)
Ahsan, S.M. (Department of Plant Medicals, College of Life Sciences and Biotechnology, Andong National University)
Publication Information
The Plant Pathology Journal / v.38, no.1, 2022 , pp. 33-45 More about this Journal
Abstract
To screen antagonistic fungi against plant pathogens, dual culture assay (DCA) and culture filtrate assay (CFA) were performed with unknown soil-born fungi. Among the different fungi isolated and screened from the soil, fungal isolate ANU-301 successfully inhibited growth of different plant pathogenic fungi, Colletotrichum acutatum, Alternaria alternata, and Fusarium oxysporum, in DCA and CFA. Morphological characteristics and rDNA internal transcribed spacer sequence analysis identified ANU-301 as Aspergillus terreus. Inoculation of tomato plants with Fusarium oxysporum f. sp. lycopersici (FOL) induced severe wilting symptom; however, co-inoculation with ANU-301 significantly enhanced resistance of tomato plants against FOL. In addition, culture filtrate (CF) of ANU-301 not only showed bacterial growth inhibition activity against Dickeya chrysanthemi (Dc), but also demonstrated protective effect in potato tuber against soft rot disease. Gas chromatography-tandem mass spectrometry analysis of CF of ANU-301 identified 2,4-bis(1-methyl-1-phenylethyl)-phenol (MPP) as the most abundant compound. MPP inhibited growth of Dc, but not of FOL, in a dose-dependent manner, and protected potato tuber from the soft rot disease induced by Dc. In conclusion, Aspergillus terreus ANU-301 could be used and further tested as a potential biological control agent.
Keywords
Aspergillus terreus; biological control agent; Dickeya chrysanthemi; Fusarium oxysporum f. sp. lycopersici; 2,4-bis(1-methyl-1-phenylethyl)-phenol;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zhao, F., Wang, P., Lucardi, R. D., Su, Z. and Li, S. 2020. Natural sources and bioactivities of 2,4-di-tert-butylphenol and its analogs. Toxins 12:35.   DOI
2 Srinivas, C., Devi, D. N., Murthy, K. N., Mohan, C. D., Lakshmeesha, T. R., Singh, B., Kalagatur, N. K., Niranjana, S. R., Hashem, A., Alqarawi, A. A., Tabassum, B., Abd_Allah, E. F., Nayakaa, S. C. and Srivastava, R. K. 2019. Fusarium oxysporum f. sp. lycopersici causal agent of vascular wilt disease of tomato: biology to diversity-a review. Saudi J. Biol. Sci. 26:1315-1324.   DOI
3 Abiona, D. L., Onawumi, O. O. E. and Oladoye, S. O. 2019. Analysis of oil fraction from Crinum jagus bulb and its antibacterial activity. In: 13th PARIS Int'l Conference on Agricultural, Chemical, Biological & Environmental Sciences (PACBES-19), eds. by K. Maeda and L. Ma, pp. 64-67. PACBES-19, Paris, France.
4 Wang, X., Li, C., Wang, M., Zhao, T. and Li, W. 2020. Bifunctional microcapsules with n-octadecane/thyme oil core and polyurea shell for high-efficiency thermal energy storage and antibiosis. Polymers 12:2226.   DOI
5 Tsukagoshi, N., Kobayashi, T. and Kato, M. 2001. Regulation of the amylolytic and (hemi-) cellulolytic genes in aspergilli. J. Gen. Appl. Microbiol. 47:1-19.   DOI
6 van der Wolf, J. M., Nijhuis, E. H., Kowalewska, M. J., Saddler, G. S., Parkinson, N., Elphinstone, J. G., Pritchard, L., Toth, I. K., Lojkowska, E., Potrykus, M., Waleron, M., de Vos, P., Cleenwerck, I., Pirhonen, M., Garlant, L., Helias, V., Pothier, J. F., Pfluger, V., Duffy, B., Tsror, L. and Manulis, S. 2014. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 64:768-774.   DOI
7 Varshney, H., Ahmad, A., Rauf, A., Husain, F. M. and Ahmad, I. 2017. Synthesis and antimicrobial evaluation of fatty chain substituted 2,5-dimethyl pyrrole and 1,3-benzoxazin-4-one derivatives. J. Saudi Chem. Soc. 21(Suppl 1):S394-S402.   DOI
8 Yu, R., Liu, J., Wang, Y., Wang, H. and Zhang, H. 2021. Aspergillus niger as a secondary metabolite factory. Front. Chem. 9:701022.   DOI
9 Zhang, D., Gong, C. and Wei, H. 2008. Chemical constituents of the culture broth of Paenibacillus polymyxa HY96-2. J. East China Univ. Sci. Technol. 34:71.
10 Baltenneck, J., Reverchon, S. and Hommais, F. 2021. Quorum sensing regulation in phytopathogenic bacteria. Microorganisms 9:239.   DOI
11 Barupal, T., Meena, M. and Sharma, K. 2019. Inhibitory effects of leaf extract of Lawsonia inermis on Curvularia lunata and characterization of novel inhibitory compounds by GC-MS analysis. Biotechnol. Rep. 23:e00335.   DOI
12 Abdallah, R. A. B., Jabnoun-Khiareddine, H., Mejdoub-Trabelsi, B. and Daami-Remadi, M. 2015. Soil-borne and compostborne Aspergillus species for biologically controlling postharvest diseases of potatoes incited by Fusarium sambucinum and Phytophthora erythroseptica. Plant Pathol. Microbiol. 6:10.
13 Abri, Kuswinanti, T., Sengin, E. L. and Sjahrir, R. 2015. Production of indole acetic acid (IAA) hormone from fungal isolates collected from rhizosphere of aromatic rice in Tana Toraja. Int. J. Curr. Res. Biosci. Plant Biol. 2:198-201.
14 Ahmad, S., Alam, O., Naim, M. J., Shaquiquzzaman, M., Alam, M. M. and Iqbal, M. 2018. Pyrrole: an insight into recent pharmacological advances with structure activity relationship. Eur. J. Med. Chem. 157:527-561.   DOI
15 Hossain, M. M., Sultana, F. and Islam, S. 2017. Plant growth-promoting fungi (PGPF): phytostimulation and induced systemic resistance. In: Plant-microbe interactions in agro-ecological perspectives, eds. by D. Singh, H. Singh and R. Prabha, pp. 135-191. Springer, Singapore.
16 Thach, O., Mielczarek, M., Ma, C., Kutty, S. K., Yang, X., Black, D. S., Griffith, R., Lewis, P. J. and Kumar, N. 2016. From indole to pyrrole, furan, thiophene and pyridine: search for novel small molecule inhibitors of bacterial transcription initiation complex formation. Bioorg. Med. Chem. 24:1171-1182.   DOI
17 Ghosh, S. K., Banerjee, S. and Sengupta, C. 2017. Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J. Biopestic. 10:105-112.
18 Gordon, T. R. 2017. Fusarium oxysporum and the Fusarium wilt syndrome. Annu. Rev. Phytopathol. 55:23-39.   DOI
19 Hugouvieux-Cotte-Pattat, N., Condemine, G. and Shevchik, V. E. 2014. Bacterial pectate lyases, structural and functional diversity. Environ. Microbiol. Rep. 6:427-440.   DOI
20 Jana, G. H., Jain, S., Arora, S. K. and Sinha, N. 2005. Synthesis of some diguanidino 1-methyl-2,5-diaryl-1H-pyrroles as antifungal agents. Bioorg. Med. Chem. Lett. 15:3592-3595.   DOI
21 Javed, A., Shah, A. H., Hussain, A., Shinwari, Z. K., Khan, S. A., Khan, W. and Jan, S. A. 2020. Potential of endophytic fungus Aspergillus terreus as potent plant growth promoter. Pak. J. Bot. 52:1083-1086.
22 Ma, B., Hibbing, M. E., Kim, H.-S., Reedy, R. M., Yedidia, I., Breuer, J., Breuer, J., Glasner, J. D., Perna, N. T., Kelman, A. and Charkowski, A. O. 2007. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 97:1150-1163.   DOI
23 Arumugam, N., Raghunathan, R., Almansour, A. I. and Karama, U. 2012. An efficient synthesis of highly functionalized novel chromeno[4,3-b]pyrroles and indolizino[6,7-b]indoles as potent antimicrobial and antioxidant agents. Bioorg. Med. Chem. Lett. 22:1375-1379.   DOI
24 Aissaoui, N., Mahjoubi, M., Nas, F., Mghirbi, O., Arab, M., Souissi, Y., Hoceini, A., Masmoudi, A. S., Mosbah, A., Cherif, A. and Klouche-Khelil, N. 2019. Antibacterial potential of 2,4-di-tert-butylphenol and calixarene-based prodrugs from thermophilic Bacillus licheniformis isolated in Algerian hot spring. Geomicrobiol. J. 36:53-62.   DOI
25 Belghit, S., Driche, E. H., Bijani, C., Zitouni, A., Sabaou, N., Badji, B. and Mathieu, F. 2016. Activity of 2,4-Di-tertbutylphenol produced by a strain of Streptomyces mutabilis isolated from a Saharan soil against Candida albicans and other pathogenic fungi. J. Mycol. Med. 26:160-169.   DOI
26 Al-Shibli, H., Dobretsov, S., Al-Nabhani, A., Maharachchikumbura, S. S. N., Rethinasamy, V. and Al-Sadi, A. M. 2019. Aspergillus terreus obtained from mangrove exhibits antagonistic activities against Pythium aphanidermatum-induced damping-off of cucumber. PeerJ 7:e7884.   DOI
27 Bajagain, R., Park, Y. and Jeong, S.-W. 2018. Feasibility of oxidation-biodegradation serial foam spraying for total petroleum hydrocarbon removal without soil disturbance. Sci. Total Environ. 626:1236-1242.   DOI
28 Bodah, E. T. 2017. Root rot diseases in plants: a review of common causal agents and management strategies. Agric. Res. Technol. Open Access J. 5:555661.
29 Akshatha, J. V., Prakash, H. S. and Nalini, M. S. 2016. Actinomycete endophytes from the ethno medicinal plants of Southern India: antioxidant activity and characterization studies. J. Biol. Act. Prod. Nat. 6:166-172.
30 Frisvad, J. C. and Larsen, T. O. 2015. Chemodiversity in the genus Aspergillus. Appl. Microbiol. Biotechnol. 99:7859-7877.   DOI
31 Bhosale, J. D., Shirolkar, A. R., Pete, U. D., Zade, C. M., Mahajan, D. P., Hadole, C. D., Pawar, S. D., Patil, U. D., Dabur, R. and Bendre, R. S. 2013. Synthesis, characterization and biological activities of novel substituted formazans of 3,4-dimethyl-1H-pyrrole-2-carbohydrazide derivatives. J. Pharm. Res. 7:582-587.   DOI
32 Borisade, O. A., Uwaidem, Y. I. and Salami, A. E. 2017. Preliminary report on Fusarium oxysporum f. sp. lycopersici (Sensu lato) from some tomato producing agroecological areas in Southwestern Nigeria and susceptibility of F1-resistant tomato hybrid (F1-Lindo) to infection. Annu. Res. Rev. Biol. 18:1-9.
33 Brookie, K. L., Best, G. I. and Conner, T. S. 2018. Intake of raw fruits and vegetables is associated with better mental health than intake of processed fruits and vegetables. Front. Psychol. 9:487.   DOI
34 Cating, R. A., Hong, J. C., Palmateer, A. J., Stiles, C. M. and Dickstein, E. R. 2008. First report of bacterial soft rot on Vanda orchids caused by Dickeya chrysanthemi (Erwinia chrysanthemi) in the United States. Plant Dis. 92:977.
35 Cazar, M. E., Schmeda-Hirschmann, G. and Astudillo, L. 2005. Antimicrobial butyrolactone I derivatives from the Ecuadorian soil fungus Aspergillus terreus Thorn. var terreus. World J. Microbiol. Biotechnol. 21:1067-1075.   DOI
36 Chakraborty, N. and Acharya, K. 2017. "NO way"! says the plant to abiotic stress. Plant Gene 11:99-105.   DOI
37 Bhardwaj, V., Gumber, D., Abbot, V., Dhiman, S. and Sharma, P. 2015. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 5:15233-15266.   DOI
38 Perombelon, M. C. M. 2002. Potato diseases caused by soft rot erwinias: an overview of pathogenesis. Plant Pathol. 51:1-12.   DOI
39 Patel, D., Patel, S., Thakar, P. and Saraf, M. 2017. Siderophore producing Aspergillus spp. as bioinoculant for enhanced growth of mung bean. Int. J. Adv. Agric. Sci. Technol. 6:111-120.
40 Pedron, J., Schaerer, S., Kellenberger, I. and Van Gijsegem, F. 2021. Early emergence of Dickeya solani revealed by analysis of Dickeya diversity of potato blackleg and soft rot causing pathogens in Switzerland. Microorganisms 9:1187.   DOI
41 Potrykus, M., Golanowska, M., Sledz, W., Zoledowska, S., Motyka, A., Kolodziejska, A., Butrymowicz, J. and Lojkowska, E. 2016. Biodiversity of Dickeya spp. isolated from potato plants and water sources in temperate climate. Plant Dis. 100:408-417.   DOI
42 Raimondi, M. V., Cascioferro, S., Schillaci, D. and Petruso, S. 2006. Synthesis and antimicrobial activity of new brominerich pyrrole derivatives related to monodeoxypyoluteorin. Eur. J. Med. Chem. 41:1439-1445.   DOI
43 Ramirez, V., Martinez, J., Bustillos-Cristales, M. D. R., Cataneda- Antonio, D., Munive, J.-A. and Baez, A. 2021. Bacillus cereus MH778713 elicits tomato plant protection against Fusarium oxysporum. J. Appl. Microbiol. 132:470-482.
44 Hussain, F., Hussain, I., Khan, A. H. A., Muhammad, Y. S., Iqbal, M., Soja, G., Reichenauer, T. G. and Yousaf, S. 2018. Combined application of biochar, compost, and bacterial consortia with Italian ryegrass enhanced phytoremediation of petroleum hydrocarbon contaminated soil. Environ. Exp. Bot. 153:80-88.   DOI
45 Domagala, A., Jarosz, T. and Lapkowski, M. 2015. Living on pyrrolic foundations: advances in natural and artificial bioactive pyrrole derivatives. Eur. J. Med. Chem. 100:176-187.   DOI
46 Galeano, R. M. S., Franco, D. G., Chaves, P. O., Giannesi, G. C., Masui, D. C., Ruller, R., Correa, B. O., da Silva Brasil, M. and Zanoelo, F. F. 2021. Plant growth promoting potential of endophytic Aspergillus niger 9-p isolated from native forage grass in Pantanal of Nhecolandia region, Brazil. Rhizosphere 18:100332.   DOI
47 Hamouda, R. A. E. F., Sorour, N. M. and Yeheia, D. S. 2016. Biodegradation of crude oil by Anabaena oryzae, Chlorella kessleri and its consortium under mixotrophic conditions. Int. Biodeterior. Biodegrad. 112:128-134.   DOI
48 Lenartowicz, P., Kafarski, P. and Lipok, J. 2015. The overproduction of 2,4-DTBP accompanying to the lack of available form of phosphorus during the biodegradative utilization of aminophosphonates by Aspergillus terreus. Biodegradation 26:65-76.   DOI
49 Liu, M., Sun, W., Wang, J., He, Y., Zhang, J., Li, F., Qi, C., Zhu, H., Xue, Y., Hu, Z. and Zhang, Y. 2018. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. Chem. 80:525-530.   DOI
50 Mahmoud, A.-L. E. and Abd-Alla, M. H. 2001. Siderophore production by some microorganisms and their effect on Bradyrhizobium- mung bean symbiosis. Int. J. Agric. Biol. 3:157-162.
51 Mosunova, O., Navarro-Munoz, J. C. and Collemare, J. 2020. The biosynthesis of fungal secondary metabolites: from fundamentals to biotechnological applications. In: Reference module in life sciences, ed. by B. D. Roitberg, pp. 1-19. Elseiver Inc., London, UK.
52 Park, H.-S., Jun, S.-C., Han, K.-H., Hong, S.-B. and Yu, J.-H. 2017. Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv. Appl. Microbiol. 100:161-202.   DOI
53 Zaman, K. A. U., Hu, Z., Wu, X., Hou, S., Saito, J., Kondratyuk, T. P., Pezzuto, J. M. and Cao, S. 2020. NF-κB inhibitory and antibacterial helvolic and fumagillin derivatives from Aspergillus terreus. J. Nat. Prod. 83:730-737.   DOI
54 Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549.   DOI
55 Viszwapriya, D., Prithika, U., Deebika, S., Balamurugan, K. and Pandian, S. K. 2016. In vitro and in vivo antibiofilm potential of 2,4-Di-tert-butylphenol from seaweed surface associated bacterium Bacillus subtilis against group A streptococcus. Microbiol. Res. 191:19-31.   DOI
56 Li, Z., Bai, T., Dai, L., Wang, F., Tao, J., Meng, S., Hu, Y., Wang, S. and Hu, S. 2016. A study of organic acid production in contrasts between two phosphate solubilizing fungi: Penicillium oxalicum and Aspergillus niger. Sci. Rep. 6:25313.   DOI
57 Campo, R., Giustra, M. G., De Marchis, M., Freni, G. and Di Bella, G. 2017. Characterization and treatment proposals of shipboard slop wastewater contaminated by hydrocarbons. Water 9:581.   DOI
58 Meckenstock, R. U., Boll, M., Mouttaki, H., Koelschbach, J. S., Cunha Tarouco, P., Weyrauch, P., Dong, X. and Himmelberg, A. M. 2016. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J. Mol. Microbiol. 26:92-118.
59 Varsha, K. K., Devendra, L., Shilpa, G., Priya, S., Pandey, A. and Nampoothiri, K. M. 2015. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int. J. Food Microbiol. 211:44-50.   DOI
60 Murali, M., Naziya, B., Ansari, M. A., Alomary, M. N., AlYahya, S., Almatroudi, A., Thriveni, M. C., Gowtham, H. G., Singh, S. B., Aiyaz, M., Kalegowda, N., Lakshmidevi, N. and Amruthesh, L. N. 2021. Bioprospecting of rhizosphere-resident fungi: their role and importance in sustainable agriculture. J. Fungi 7:314.   DOI
61 Vegh, A., Nemethy, Z., Salamon, P., Mandoki, Z. and Palkovics, L. 2014. First report of bacterial wilt on chrysanthemum caused by Dickeya chrysanthemi (syn. Erwinia chrysanthemi) in Hungary. Plant Dis. 98:988.
62 Wang, M.-Z., Xu, H., Liu, T.-W., Feng, Q., Yu, S.-J., Wang, S.-H. and Li, Z.-M. 2011. Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur. J. Med. Chem. 46:1463-1472.   DOI
63 Salas-Marina, M. A., Silva-Flores, M. A., Cervantes-Badillo, M. G., Rosales-Saavedra, M. T., Islas-Osuna, M. A. and Casas- Flores, S. 2011. The plant growth-promoting fungus Aspergillus ustus promotes growth and induces resistance against different lifestyle pathogens in Arabidopsis thaliana. J. Microbiol. Biotechnol. 21:686-696.   DOI
64 Samson, R., Legendre, J. B. and Christen, R., Fischer-Le Saux M., Achouak W. and Gardan L. 2005. Transfer of Pectobacterium chrysanthemi (Burkholder et al., 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int. J. Syst. Evol. Microbiol. 55:1415-1427.   DOI
65 Shin, D. J., Yoo, S.-J., Hong, J. K., Weon, H.-Y., Song, J. and Sang, M. K. 2019. Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on growth promotion and alleviation of heat and drought stresses in Chinese cabbage. Plant Pathol. J. 35:178-187.   DOI
66 Sebesta, M., Urik, M., Bujdos, M., Kolencik, M., Vavra, I., Dobrocka, E., Kim, H. and Matus, P. 2020. Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. J. Fungi 6:210.   DOI
67 Shaaban, M., Ghani, M. A. and Issa, M. Y. 2021. New naturally occurring compounds from Sarcophyton trocheliophorum. Biointerface Res. Appl. Chem. 12:2285-2331.   DOI
68 Ab Rahman, S. F. S., Singh, E., Pieterse, C. M. J. and Schenk, P. M. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267:102-111.   DOI
69 Singh, V. K., Singh, H. B. and Upadhyay, R. S. 2017. Role of fusaric acid in the development of 'Fusarium wilt' symptoms in tomato: physiological, biochemical and proteomic perspectives. Plant Physiol. Biochem. 118:320-332.   DOI
70 Slawiak, M., van Beckhoven, J. R., Speksnijder, A. G. C. L., Czajkowski, R., Grabe, G. and van der Wolf, J. M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur. J. Plant Pathol. 125:245-261.   DOI
71 Ortega, H. E., Torres-Mendoza, D., Caballero E, Z. and Cubilla- Rios, L. 2021. Structurally uncommon secondary metabolites derived from endophytic fungi. J. Fungi 7:570.   DOI
72 Melappa, G., Shilpashree, C. B., Channabasava and Prakash, B. 2017. In vitro antimitotic, antiproliferative and GC-MS studies on the methanolic extract of endophytic fungi, penicillium species of Tabebuia argentea bur & k. Sch. Farmacia 65:301-309.
73 Nahar, K. and Ullah, S. M. 2012. Morphological and physiological characters of tomato (Lycopersicon esculentum Mill) cultivars under water stress. Bangladesh J. Agric. Res. 37:355-360.   DOI
74 Nenwani, V., Doshi, P., Saha, T. and Rajkumar, S. 2010. Isolation and characterization of a fungal isolate for phosphate solubilization and plant growth promoting activity. J. Yeast Fungal Res. 1:009-014.
75 Ozimek, E., Jaroszuk-Scisel, J., Bohacz, J., Kornillowicz-Kowalska, T., Tyskiewicz, R., Slomka, A., Nowak, A. and Hanaka, A., 2018. Synthesis of indoleacetic acid, gibberellic acid and ACC-deaminase by Mortierella strains promote winter wheat seedlings growth under different conditions. Int. J. Mol. Sci. 19:3218.   DOI
76 Padmavathi, A. R., Abinaya, B. and Pandian, S. K. 2014. Phenol, 2,4-bis(1,1-dimethylethyl) of marine bacterial origin inhibits quorum sensing mediated biofilm formation in the uropathogen Serratia marcescens. Biofouling 30:1111-1122.   DOI
77 El-hawary, S. S., Moawad, A. S., Bahr, H. S., Abdelmohsen, U. R. and Mohammed, R. 2020. Natural product diversity from the endophytic fungi of the genus Aspergillus. RSC Adv. 10:22058-22079.   DOI
78 Rajaofera, M. J. N., Wang, Y., Dahar, G. Y., Jin, P., Fan, L., Xu, L., Liu, W. and Miao, W. 2019. Volatile organic compounds of Bacillus atrophaeus HAB-5 inhibit the growth of Colletotrichum gloeosporioides. Pestic. Biochem. Physiol. 156:170-176.   DOI
79 Li, W., Long, Y., Mo, F., Shu, R., Yin, X., Wu, X., Zhang, R., Zhang, Z., He, L., Chen, T. and Chen, J. 2021. Antifungal activity and biocontrol mechanism of Fusicolla violacea J-1 against soft rot in kiwifruit caused by Alternaria alternata. J. Fungi 7:937.   DOI
80 Bouhlal, F., Aqil, Y., Chamkhi, I., Belmaghraoui, W., Labjar, N., Hajjaji, S. E., Benabdellah, G. A., Aurag, J., Lotfi, E. M. and Mahi, M. E. 2020. GC-MS analysis, phenolic compounds quantification, antioxidant, and antibacterial activities of the hydro-alcoholic extract of spent coffee grounds. J. Biol. Act. Prod. Nat. 10:325-337.
81 Dharni, S., Sanchita, Maurya, A., Samad, A., Srivastava, S. K., Sharma, A. and Patra, D. D. 2014. Purification, characterization, and in vitro activity of 2,4-Di-tert-butylphenol from Pseudomonas monteilii PsF84: conformational and molecular docking studies. J. Agric. Food Chem. 62:6138-6146.   DOI
82 Toth, I. K., Van der Wolf, J. M., Saddler, G., Lojkowska, E., Helias, V., Pirhonen, M., Tsror, L. and Elphinstone, J. G. 2011. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 60:385-399.   DOI
83 White, T. J., Bruns, T., Lee, S. and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications, eds. by M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, pp. 315-322. Academic Press, New York, USA.
84 Joncy, A. M., Angappan, K., Nakkeeran, S., Tilak, M. and Umapathy, G. 2019. Exploration of antifungal metabolites of Aspergillus terreus (ENF12), an endophytic fungus isolated from mulberry (Morus Indica L.) leaf. Curr. J. Appl. Sci. Technol. 38:1-15.
85 Vassileva, M., Malusa, E., Eichler-Lobermann, B. and Vassilev, N. 2020. Aspegillus terreus: from soil to industry and back. Microorganisms 8:1655.   DOI
86 Park, B. R., Son, H. J., Park, J. H., Kim, E. S., Heo, S. J., Youn, H. R., Koo, Y. M., Heo, A. Y., Choi, H. W., Sang, M. K., Lee, S.-W., Choi, S. H. and Hong, J. K. 2021. Chemical fungicides and Bacillus siamensis H30-3 against fungal and oomycete pathogens causing soil-borne strawberry diseases. Plant Pathol. J. 37:79-85.   DOI
87 Kumar, N. V., Rajam, K. S. and Rani, M. E. 2017. Plant growth promotion efficacy of indole acetic acid (IAA) produced by a mangrove associated fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. Appl. Sci. 6:2692-2701.   DOI
88 Waqas, M., Khan, A. L., Hamayun, M., Shahzad, R., Kang, S.- M., Kim, J.-G. and Lee, I.-J. 2015. Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J. Plant Interact. 10:280-287.   DOI