• Title/Summary/Keyword: Soft ground measurement

Search Result 83, Processing Time 0.022 seconds

A Case Study on the Analysis of Soft Ground Consolidation by the Measurement of Surface Settlement Plate (지표침하판계측을 통한 연약지반 침하분석 사례연구)

  • Kim, Joon-Seok
    • Journal of Urban Science
    • /
    • v.9 no.2
    • /
    • pp.51-56
    • /
    • 2020
  • The installation of soft ground instruments and the performance of measurement and management of the measurement shall be carried out in order to ensure the safety of the construction work and to improve the quality of the construction work. The purpose of the pressure density deposition calculation is to determine the stability of the foundation ground and the formulation by measuring and calculating the density conditions generated on the soil through the period of neglect after completion of the soil at each stage. In practice, it is judged that the analysis by the hyperbolic method can be applied to the safety side.

A Study on the Stress Distribution beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lim, Jong-Seok;Lee, In-Hyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.423-428
    • /
    • 2005
  • If the load of constructing vehicles during the construction work acts on the road or the ground surface on the soft ground, due to the excess stresses in soils the trafficability of the vehicles influences the constructing efficiency, constructing period and so on. Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research represents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer for its vertical and horizontal stress in (1)homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stress turn out to be different in the value of theoretical and actual measurement after the trial examination of model.

  • PDF

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.

A Development of Automated Monitoring Technique and Feedback Design System for Embankment on Soft Ground (연약지반 계측 정보관리 및 자동분석.재설계 시스템 개발)

  • 한영철;윤동덕;김주용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.103-108
    • /
    • 1999
  • This paper describes development of a new automated real-time system which preforms measurement data reduction and management, geotechnical backanalysis, and feedback design for embankment construction on soft ground. Such a system can be an effective, useful and economical tool for managing a large site development on soft ground. The system consists of data base system to characterize soil properties and identify instrumentation, analysis system for ground behavior and stability coupled with automatic monitoring system, and feedback design system which is a new technique to reflect the analysis of measured ground behavior against original design.

  • PDF

Prediction and Field Measurement on Behaviour of Soft Clay during Deep Excavation (연약점성토지반에서의 깊은굴착에 따른 지반거동의 예측과 현장계측)

  • 정성교;조기영;정은용
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.111-124
    • /
    • 1999
  • When deep excavation adjacent to an existing structure is performed, it is very important to minimize damage on the structure through the prediction of ground movement. In this paper, finite element analysis was performed to predict the ground movement, based on the data from site investigation and laboratory tests, when deep excavation close to a buried water tank was carried out in soft clay ground. The movement and stabilities of the soil-cement wall(SCW) and the adjacent structure were checked using the results of the analysis and the field measurement. The comparison between the measured and the predicted ground movements showed the significance of the excavation procedure and lowering of water level in the analytical model. In the future, it is needed to improve the prediction method for better estimation of the ground movement.

  • PDF

Analysis on the Safety of Structure and Economics of Replacement Method Using Rock Debris in the Soft Ground - Case Study of Miho Stream Crossing Road in Cheongju City (연약지반 암버럭 치환공법의 구조물 안정성과 경제성 분석 - 청주시 미호천 횡단도로를 대상으로)

  • Heo, Kang Kug;Park, Hyung Keun;Ahn, Byung Chul;Min, Byeong Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.4
    • /
    • pp.705-713
    • /
    • 2016
  • For the soft ground construction, the factors not considered in the design stage occurs in the construction stage so that they cause the increase of the construction cost due to the structural stability and the design change. The subject of the study is the construction section of the industrial complex access road made in the Ochang region of Chungcheongbuk-do. The study is concerned with selecting the soft ground handling method such as the replacement method using rock debris and the surcharge reflecting the service load as the soft ground handling measure and analyzing the effect of reducing the construction cost with the stability of structures and the reduction of the construction period. The soft ground in the study section consists of sandy and cohesive soil and is 2.4m to 5.5m deep. It is distributed unevenly between the 1.5m to 5.9m stratums under the ground surface. Settlement is not serious, but the future uneven settlement and difference are expected so that the future settlement behavior is estimated by analyzing the site measurement results after the soft ground treatment. Moreover, in consideration of the regional characteristics and economic efficiency, soil with good quality is replaced with rock debris as the replacement material so that 29% of the construction cost is reduced due to the increase of stability and the reduction of duration. If the estimation of the dispersion of the pore water pressure within the dam body and the change of the underground water level and the relation of the actually measured soft ground with consolidation is studied further on the basis of the study, it is expected that the behavior of the soft ground will be correctly estimated in various site conditions.

A Study on Ground Heave Characteristics of Soft Ground with DCM (DCM으로 개량된 연약점토지반의 지반융기에 관한 고찰)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.4
    • /
    • pp.75-84
    • /
    • 2020
  • This paper described the analysis result on heaving of soft ground with DCM column type, based on the results of laboratory model tests on the soft ground with DCM column. The heave characteristics of the soft ground were evaluated according to the application of DCM column in soft ground. The results showed that the heaving of soft ground without DCM column occurred rapidly when the lateral deformation of soft ground increased significantly under the 4th load step condition. In addition, the heaving of soft ground in final load step caused tensile failure of the ground surface. The maximum heaving of the soft ground with the DCM column occurred in the final load step, and the heaving quantity decreased in the order of pile, wall, and grid type. Especially, the soft ground with DCM of grid type effectively resisted ground heaving, even if it was extremely failure in the bottom ground of embankment. The results of the maximum heaving according to the measurement point showed that the heaving of the soft ground with DCM of grid type was 3.1% and 1.6% compared to that of the pile and wall type at the location of LVDT-1, and the heaving of the LVDT-2 position was 1.0% and 2.1%, respectively.

A Case Study on the Suction Drain Method for Soft Ground Improvement (연약지반 개량을 위한 석션드레인공법의 적용 사례)

  • Kim, Do-Hyung;Kim, Byung-Il;Han, Sang-Jae;Lee, Jae-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.743-749
    • /
    • 2009
  • In this study, the field test for suction drain method which does not require a surcharge load and a sealing sheet was performed at west seashore's site constructed by the dredged and reclaimed clay. The improvements of soft ground by suction drain method was analyzed by the results of real-time field measurement, SPT(Standard Penetration Test) and laboratory tests. The results indicated that the soft ground improvement is effective the vertical drain method used with vacuum pressure rather than surcharge load with considering settlements, dissipation of pore water pressure and shear strength.

  • PDF

Development of Automatic PBD Construction Quality Measurement System for Soft Ground Improvement (연약지반 개량을 위한 PBD 시공품질 자동측정시스템 개발)

  • Kim, Min-Ho;Mun, Sang-Don;Kim, Hang-Young;Kim, Tae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.605-610
    • /
    • 2011
  • Soft ground improvement is essential to enhance strength of ground for construction in reclaimed land or shore. There are many method of soft ground improvement, and vertical drain method was widely used in many countries including korea. As vertical drain method is to plant many Prefabricated Vertical Drains in soft ground, it promotes consolidation and enhances strength. The PBD(Plastci Board Drain) that is excellent economy and workability was widely used in many countries as Prefabricated Vertical Drains. Construction quality of PBD is affected installation depth, pressure, perpendicularity. This paper describes the system developed that can automatically measure installation depth, pressure and perpendicularity for PBD. This system can reduce fraction defective of construction by auto faulty alarm and keeps the safety of operator by auto control system.