• Title/Summary/Keyword: Social big data analysis

Search Result 731, Processing Time 0.031 seconds

MapReduce-Based Partitioner Big Data Analysis Scheme for Processing Rate of Log Analysis (로그 분석 처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법)

  • Lee, Hyeopgeon;Kim, Young-Woon;Park, Jiyong;Lee, Jin-Woo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.593-600
    • /
    • 2018
  • Owing to the advancement of Internet and smart devices, access to various media such as social media became easy; thus, a large amount of big data is being produced. Particularly, the companies that provide various Internet services are analyzing the big data by using the MapReduce-based big data analysis techniques to investigate the customer preferences and patterns and strengthen the security. However, with MapReduce, when the big data is analyzed by defining the number of reducer objects generated in the reduce stage as one, the processing rate of big data analysis decreases. Therefore, in this paper, a MapReduce-based split big data analysis method is proposed to improve the log analysis processing rate. The proposed method separates the reducer partitioning stage and the analysis result combining stage and improves the big data processing rate by decreasing the bottleneck phenomenon by generating the number of reducer objects dynamically.

Ontology Development of School Bullying for Social Big Data Collection and Analysis (소셜빅데이터 수집 및 분석을 위한 아동청소년 학교폭력 온톨로지 개발)

  • Han, Yoonsun;Kim, Hayoung;Song, Juyoung;Song, Tae Min
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.6
    • /
    • pp.10-23
    • /
    • 2019
  • Although social big data can provide a multi-faceted perspective on school bullying experiences among children and adolescents, the complexity and variety of unstructured text presents a challenge for systematic collection and analysis of the data. Development of an ontology, which identifies key terms and their intricate relationships, is crucial for extracting key concepts and effectively collecting data. The current study elaborated on the definition of an ontology, carefully described the 7 stage development process, and applied the ontology for collecting and analyzing school bullying social big data. As a result, approximately 2,400 key terms were extracted in top-, middle-, and lower-level categories, concerning domains of participants, causes, types, location, region, and intervention. The study contributes to the literature by explaining the ontology development process and proposing a novel alternative research model that uses social big data in school bullying research. Findings from this ontology study may provide a basis for social big data research. Practical implications of this study lie in not only helping to understand the experience of school bullying participants, but also in offering a macro perspective on school bullying as a social phenomenon.

A study on the internal reputation factors affecting the job satisfaction: Focusing on big data analysis in the social media for corporation reputation (직무만족도에 영향을 미치는 내부평판 요인에 관한 연구: 기업정보 제공 소셜 미디어 빅데이터를 중심으로)

  • Seo, Woon-Chae;Kim, Hyoung-Joong
    • Journal of Digital Contents Society
    • /
    • v.17 no.4
    • /
    • pp.295-305
    • /
    • 2016
  • The purpose of this study is to analyze the internal reputation factors that affect the job satisfaction by big data analysis in the social media for corporate reputation and verify the difference between large corporations and small-medium corporations for each factor of internal reputation. The result showed 'Salaries and Benefits' is a major factor that affects the job satisfaction for all research corporations, 'Senior Management' is a major factor for large corporations, and 'Salaries and Benefits' is a major factor for small-medium corporations. As for the difference factors of large corporations and small-medium corporations are 'Job Satisfaction', 'Salaries and Benefits', and 'Work-life Balance'. Unstructured data analysis shows some interesting features to be studied further.

Design and Development of POS System Based on Social Network Service (소셜 네트워크 서비스 기반의 POS 시스템 설계 및 개발)

  • Yoon, Jung Hyun;Moon, Hyun Sil;Kim, Jae Kyeong;Choi, Ju Cheol
    • Journal of Information Technology Services
    • /
    • v.14 no.2
    • /
    • pp.143-158
    • /
    • 2015
  • Companies and governments in an era of big data have been tried to create new values with their data resources. Among many data resources, many companies especially pay attention to data which is obtained from Social Network Service (SNS) because it reveals precise opinion of customers and can be used to estimate profiles of them from their social relationships. However, it is not only hard to collect, store, and analyze the data, but system applications are also insufficient. Therefore, this study proposes a S-POS (Social POS) system which consists of three parts; Twitter Side, POS Side and TPAS (Twitter&POS Analysis System). In this system, SNS data and POS data which are collected from Twitter Side and POS Side are stored in Mongo D/B. And it provides several services with POS terminal based on analysis and matching results which are generated from TPAS. Through S-POS system, we expect to efficient and effective store and sales managements of system users. Moreover, they can provide some differentiated services such as cross-selling and personalized recommendation services.

Big Data Analysis of Social Media on Gangwon-do Tourism (강원도 관광에 대한 소셜 미디어 빅데이터 분석)

  • JIN, TIANCHENG;Jeong, Eun-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2021
  • Recently, posts and opinions on tourist attractions are actively shared on social media. These social big data provide meaningful information to identify objective images of tourist destinations recognized by consumers. Therefore, an in-depth understanding of the tourist image is possible by analyzing these big data on tourism. The study is to analyze destination images in Gangwon-do using big data from social media. It is wanted to understand destination images in Gangwon-do using semantic network analysis and then provided suggestions on how to enhance image to secure differentiated competitiveness as a destination for tourists. According to the frequency analysis results, as tourism in Gangwon-do, Sokcho, Gangneung, and Yangyang were mentioned at a high level in that order, and the purpose of travel was restaurant tour, gourmet food, family trip, vacation, and experience. In particular, it was found that they preferred day trips, weekends, and experiences. Four suggestions were made based on the results. First, it is necessary to develop various types of hotels, accommodation facilities and experience-oriented tour packages. Second, it is necessary to develop a day-to-day travel package that utilizes proximity to the Seoul metropolitan area. Third, it is necessary to promote traditional restaurants and local food. Finally, it is necessary to develop tourist package suitable for healing and family travel. Through this research, the destination image of Gangwon-do was identified and a tourism marketing strategy was presented to improve competitiveness. It also provided a theoretical basis for the use of the big data of tourism consumers in the field of tourism business.

Business Intelligence and Marketing Insights in an Era of Big Data: The Q-sorting Approach

  • Kim, Ki Youn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.2
    • /
    • pp.567-582
    • /
    • 2014
  • The purpose of this study is to qualitatively identify the typologies and characteristics of the big data marketing strategy in major companies that are taking advantage of the big data business in Korea. Big data means piles accumulated from converging platforms such as computing infrastructures, smart devices, social networking and new media, and big data is also an analytic technique itself. Numerous enterprises have grown conscious that big data can be a most significant resource or capability since the issue of big data recently surfaced abruptly in Korea. Companies will be obliged to design their own implementing plans for big data marketing and to customize their own analytic skills in the new era of big data, which will fundamentally transform how businesses operate and how they engage with customers, suppliers, partners and employees. This research employed a Q-study, which is a methodology, model, and theory used in 'subjectivity' research to interpret professional panels' perceptions or opinions through in-depth interviews. This method includes a series of q-sorting analysis processes, proposing 40 stimuli statements (q-sample) compressed out of about 60 (q-population) and explaining the big data marketing model derived from in-depth interviews with 20 marketing managers who belong to major companies(q-sorters). As a result, this study makes fundamental contributions to proposing new findings and insights for small and medium-size enterprises (SMEs) and policy makers that need guidelines or direction for future big data business.

Big Data Utilization and Policy Suggestions in Public Records Management (공공기록관리분야의 빅데이터 활용 방법과 시사점 제안)

  • Hong, Deokyong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.4
    • /
    • pp.1-18
    • /
    • 2021
  • Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.

Recommended Chocolate Applications Based On The Propensity To Consume Dining outside Using Big Data On Social Networks

  • Lee, Tae-gyeong;Moon, Seok-jae;Ryu, Gihwan
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.325-333
    • /
    • 2020
  • In the past, eating outside was usually the purpose of eating. However, it has recently expanded into a restaurant culture market. In particular, a dessert culture is being established where people can talk and enjoy. Each consumer has a different tendency to buy chocolate such as health, taste, and atmosphere. Therefore, it is time to recommend chocolate according to consumers' tendency to eat out. In this paper, we propose a chocolate recommendation application based on the tendency to eat out using data on social networks. To collect keyword-based chocolate information, Textom is used as a text mining big data analysis solution.Text mining analysis and related topics are extracted and modeled. Because to shorten the time to recommend chocolate to users. In addition, research on the propensity of eating out is based on prior research. Finally, it implements hybrid app base.

Conparison of Data Collection Methods for Big Data Analysis (빅데이터 분석을 위한 자료 수집 방안 비교)

  • Kim, Sung-kook;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.422-424
    • /
    • 2018
  • Recently there has been growing interest in big data analysis and methods for collecting data have been developed diversely but researchers are still not easy to collect and use these large scale data. In this paper, researchers try to compare and analyze the method of collecting big data by using several methods and present it. I hope that you can provide the results of your research if you select and use methods that match your research objectives.

  • PDF

The Interpretation of Results from Big Data Analysis : Focusing on Brand Awareness and Preference (빅데이터 분석결과에 대한 해석 : 브랜드 인지도와 선호도를 중심으로)

  • Kim, Do-Goan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.117-119
    • /
    • 2016
  • Various sites which provide big data analysis service do not show the interpretation of analysis results such as social trends and events but simple numeric results. In this point, this study attempts to suggest a way of interpretation on big data analysis results focusing on brand awareness and preference.

  • PDF