• Title/Summary/Keyword: Snap-back effect

Search Result 6, Processing Time 0.019 seconds

A Study on the Change of Electrical Characteristics in the EST(Emitter Switched Thyristor) with Trench Electrodes (EST(Emitter Switched Thyristor) 소자의 트랜치 전극에 의한 특성 변화 연구)

  • 김대원;성만영;강이구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • In this paper. a new two types of EST(Emitter Switched Thyristor) structures are proposed to improve the electrical characteristics including the current saturation capability. Besides, the two dimensional numerical simulations were carried out using MEDICI to verify the validity of the device and examine the electrical characteristics. First, a vortical trench electrode EST device is proposed to improve snap-back effect and its blocking voltage. Second, a dual trench gate EST device is proposed to obtain high voltage current saturation characteristics and high blocking voltage and to eliminate snap-back effect. The two proposed devices have superior electrical characteristics when compared to conventional devices. In the vertical trench electrode EST, the snap-back effect is considerably improved by using the vertical trench gate and cathode electrode and the blocking voltage is one times better than that of the conventional EST. And in the dual trench gate EST, the snap-back effect is completely removed by using the series turn-on and turn-off MOSFET and the blocking voltage is one times better than that of the conventional EST. Especially current saturation capability is three times better than that of the other EST.

A New EST with Dual Trench Gate Electrode (DTG-EST)

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.15-19
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. Also the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and 35A/$\textrm{cm}^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and 100A/$\textrm{cm}^2$, respectively.

700V Emitter Switched Thyristor(EST) with Dual Trench Gate (700V급 듀얼 트랜치 게이트를 가지는 Emitter Switched Thyristor(EST))

  • Kim, Dae-Won;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.27-30
    • /
    • 2003
  • In this paper, the new dual trench gate Emitter Switched Thyristor (DTG-EST) is proposed for improving snap-back effect which leads to a lot of serious problems of device applications. And the parasitic thyristor that is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $35A/cm^2$, respectively. But the proposed DTG-EST exhibits snap-back with the anode voltage and current density 0.96V and $100A/cm^2$, respectively.

  • PDF

An Emitter Switched Thyristor with vertical series MOSFET structure (수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

The Change of Electrical Characteristics in the EST with Trench Electrodes (트랜치 전극을 가진 Emitter Switched Thyristor의 전기적 특성 변화)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo;Lee, Dong-Hee
    • 한국컴퓨터산업교육학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.71-74
    • /
    • 2003
  • A vertical trench electrode type EST has been proposed in this paper. The proposed device considerably improve the snap-back effect which leads to a lot of problem of device applications. In this paper, the vertical dual gate Emitter Switched Thyristor(EST) with trench electrode has been proposed for improving snap-back effect. It is observed that the forward blocking voltage of the proposed device is 800V. The conventional EST of the same size were no more than 633V. Because the proposed device was constructed of trench-type electrode, the electric field moved toward trench-oxide layer, and the punch through breakdown of the proposed EST is occurred at latest.

  • PDF

Design and Fabrication of 1700 V Emitter Switched Thyristor (1700 V급 EST소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ahn, Byoung-Sub;Nam, Tae-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2010
  • In this paper, the trench gate emitter switched thyristor(EST) withl trench gate electrode is proposed for improving snap-back effect which leads to a lot of problems in device applications. The parasitic thyristor which is inherent in the conventional EST is completely eliminated in this structure, allowing higher maximum controllable current densities for ESTs. The dual trench gate allows homogenous current distribution in the EST and preserves the unique feature of the gate controlled current saturation of the thyristor current. The characteristics of the 1700 V forward blocking EST obtained from two-dimensional numerical simulations (MEDICI) is described and compared with that of a conventional EST. we carried out layout, design and process of EST devices.