• 제목/요약/키워드: SnS

Search Result 1,958, Processing Time 0.034 seconds

Improving the Efficiency of SnS Thin Film Solar Cells by Adjusting the Mg/(Mg+Zn) Ratio of Secondary Buffer Layer ZnMgO Thin Film (2차 버퍼층 ZnMgO 박막의 Mg/(Mg+Zn) 비율 조절을 통한 SnS 박막 태양전지 효율 향상)

  • Lee, Hyo Seok;Cho, Jae Yu;Youn, Sung-Min;Jeong, Chaehwan;Heo, Jaeyeong
    • Korean Journal of Materials Research
    • /
    • v.30 no.10
    • /
    • pp.566-572
    • /
    • 2020
  • In the recent years, thin film solar cells (TFSCs) have emerged as a viable replacement for crystalline silicon solar cells and offer a variety of choices, particularly in terms of synthesis processes and substrates (rigid or flexible, metal or insulator). Among the thin-film absorber materials, SnS has great potential for the manufacturing of low-cost TFSCs due to its suitable optical and electrical properties, non-toxic nature, and earth abundancy. However, the efficiency of SnS-based solar cells is found to be in the range of 1 ~ 4 % and remains far below those of CdTe-, CIGS-, and CZTSSe-based TFSCs. Aside from the improvement in the physical properties of absorber layer, enormous efforts have been focused on the development of suitable buffer layer for SnS-based solar cells. Herein, we investigate the device performance of SnS-based TFSCs by introducing double buffer layers, in which CdS is applied as first buffer layer and ZnMgO films is employed as second buffer layer. The effect of the composition ratio (Mg/(Mg+Zn)) of RF sputtered ZnMgO films on the device performance is studied. The structural and optical properties of ZnMgO films with various Mg/(Mg+Zn) ratios are also analyzed systemically. The fabricated SnS-based TFSCs with device structure of SLG/Mo/SnS/CdS/ZnMgO/AZO/Al exhibit a highest cell efficiency of 1.84 % along with open-circuit voltage of 0.302 V, short-circuit current density of 13.55 mA cm-2, and fill factor of 0.45 with an optimum Mg/(Mg + Zn) ratio of 0.02.

SNS(Sequential Numbering System): MRP시스템의 대안

  • 전태준;김승렬
    • Korean Management Science Review
    • /
    • v.5 no.2
    • /
    • pp.42-47
    • /
    • 1988
  • 본 논문은 범용 시스템으로서의 MRP에 대한 대안으로서 SNS를 소개하고, 두 시스템에 대한 비교 분석을 목적으로 한다. 이를 위해서 2장에서 MRP시스템의 문제점을 분석하고 3장에서 SNS의 기본원리를 소개한 후 4장에서 두 시스템을 비교 분석하였다.

  • PDF

Photoactivity of SnO2-Doped TiO2 Powder Sensitized with Quinacridone (Quinacridone을 첨가시킨 SnO2가 도핑된 TiO2 분말의 광촉매 특성)

  • Jung, Miewon;Kwak, Yunjung
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.650-653
    • /
    • 2007
  • $SnO_2$-doped $TiO_2$ powder was obtained from tin (IV) bis(acetylacetonate) dichloride and titanium diisopropoxide bis(acetylacetonate) with quinacridone as the dye sensitizer molecule. The structural changes of the reaction mixture were monitored by fourier transform infrared (FT-IR) spectroscopy. The morphology and microstructure of gel powder were studied by field-emission scanning electron microscopy (FE-SEM) and X-ray diffractometry (XRD). The photocatalytic activity of these powders with the anatase structure was investigated by using indigo carmine solution as a test dye

Effect of Alloying Elements Si, S, Cu, Sn, and Ni on Oxidation of Low Carbon Steels between 1050 and 1180℃ in Air (저탄소강의 대기중 1050~1180℃의 산화에 미치는 합금원소 Si, S, Cu, Sn, Ni의 영향)

  • Bak, Sang Hwan;Lee, Dong Bok;Baek, Seon-Pil
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.8
    • /
    • pp.749-756
    • /
    • 2010
  • Low carbon steels were oxidized isothermally at 1050 and $1180^{\circ}C$ for 4 hr in air in order to determine the effect of alloying elements Si, S, Cu, Sn, and Ni on oxidation. For oxidation resistance of low carbon steels, the beneficial elements were Si, Cu, and Ni, whereas the harmful elements were S and Sn. The most active alloying element, Si, was scattered inside the oxide scale, at the scale-alloy interface, and as an internal oxide precipitate. The relatively noble elements such as Cu and Ni tended to weakly segregate at the scale-alloy interface. Sulfur and Sn were weakly, uniformly distributed inside the oxide scale. Excessively thick, non-adherent scales containing interconnected pores formed at $1180^{\circ}C$.

The Oxidation Study of Pure Tin via Electrochemical Reduction Analysis (전기화학적 환원 분석을 통한 Sn의 산화에 대한 연구)

  • Cho Sungil;Yu Jin;Kang Sung K.;Shih Da-Yuan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.3 s.32
    • /
    • pp.55-62
    • /
    • 2004
  • The oxidation of pure Sn and high Pb-Sn alloys was investigated under different oxidizing conditions of temperature and humidity. Both the chemical nature and the amount of oxides were characterized using electrochemical reduction analysis by measuring the electrolytic reduction potential and total transferred electrical charges. For pure tin, SnO grew faster under humid condition than in dry air at $85^{\circ}C$. A very thin (<10 ${\AA}$) layer of SnO, was formed on the top surface under humid condition. The mixture of SnO and $SnO_2$ was found for oxidation at $150^{\circ}C$. XPS and AES were performed to support the result of oxide reduction.

  • PDF

Characterization of Atomic-Layer Deposited ZnSnO Buffer Layer for 18%- Efficiency Cu(In,Ga)Se2 Solar Cells (18% 효율 Cu(In,Ga)Se2 박막태양전지용 ZnSnO 버퍼층의 원자층 증착법 및 분석)

  • Kim, Sun Cheul;Kim, Seung Tae;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.54-60
    • /
    • 2015
  • ZnSnO thin films were deposited by atomic layer deposition (ALD) process using diethyl zinc ($Zn(C_2H_5)_2$) and tetrakis (dimethylamino) tin ($Sn(C_2H_6N)_4$) as metal precursors and water vapor as a reactant. ALD process has several advantages over other deposition methods such as precise thickness control, good conformality, and good uniformity for large area. The composition of ZnSnO thin films was controlled by varying the ratio of ZnO and $SnO_2$ ALD cycles. The ALD ZnSnO film was an amorphous state. The band gap of ZnSnO thin films increased as the Sn content increased. The CIGS solar cell using ZnSnO buffer layer showed about 18% energy conversion efficiency. With such a high efficiency with the ALD ZnSnO buffer and no light soaking effect, AlD ZnSnO buffer mighty be a good candidate to replace Zn(S,O) buffer in CIGSsolar cells.

Effect of V and Sb on the Characteristics of β to α Transformation in Zr-0.84Sn Alloy (V과 Sb 첨가가 Zr-0.84Sn 합금의 β→α 상변태 특성에 미치는 영향)

  • O, Yeong-Min;Jeong, Yong-Hwan-Jeong;Kim, Seon-Jin-Kim
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.317-323
    • /
    • 2002
  • Effect of V and Sb content on characteristics of ${\beta}\;to\;{\alpha}$ phase transformation in Zr-0.84Sn alloy has been studied using optical microscopy and transmission electron microscopy. As V content increased, the ${\beta}{\to}{\beta}+{\alpha}$ transformation temperature was lowered, thus allowing the width of $\alpha$-lath in air-cooled Zr-0.86Sn-0.40V alloy to be fine. The width of ${\alpha}$-lath in air-cooled Zr-0.84Sn-xSb, however, was rarely changed with Sb content. The ${\beta}\;to\;{\alpha}$ transformed microstructures of water-quenched Zr-0.84Sn, Zr-0.84Sn-0.10V and Zr-0.84Sn-0.19V alloys were mainly slipped martensite. On the other hand, those of wafter-quenched Zr-0.86Sn-0.40V and Zr-0.85Sn-0.05Sb alloys were predominantly twinned martensite. In case of water-quenched Zr-0.85Sn-0.12Sb and Zr-0.84Sn-0.17Sb alloys, basketweave structure was observed. The transition of slipped martensite to twinned martensite in Zr-0.84Sn-xV alloys and the transition of twinned martensite to basketweave structure in Zr-0.84Sn-xSb alloys were due to the decrease of $M_s$ temperature.

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks

  • Munir, Rahim;Jung, Gwang Sun;Ko, Young Min;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.183-189
    • /
    • 2013
  • $Cu_2ZnSn(S,Se)_4$ material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in $Cu(In,Ga)Se_2$ solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and $SnSe_2$ were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/$SnSe_2$/ZnSe stack provided a uniform film with larger grains compared to that with $Cu_2Se/SnSe_2$/ZnSe stack. Also, voids were not observed at the $Cu_2ZnSnSe_4$/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a $SnSe_2$ environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to $Cu_2Se$ top-layer stack.