Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.4.317

Effect of V and Sb on the Characteristics of β to α Transformation in Zr-0.84Sn Alloy  

O, Yeong-Min (Div. of Materials Science and engingeering, Hanyang University)
Jeong, Yong-Hwan-Jeong (Development of Advanced cladding materials, KAERI)
Kim, Seon-Jin-Kim (Div. of Materials Science and engingeering, Hanyang University)
Publication Information
Korean Journal of Materials Research / v.12, no.4, 2002 , pp. 317-323 More about this Journal
Abstract
Effect of V and Sb content on characteristics of ${\beta}\;to\;{\alpha}$ phase transformation in Zr-0.84Sn alloy has been studied using optical microscopy and transmission electron microscopy. As V content increased, the ${\beta}{\to}{\beta}+{\alpha}$ transformation temperature was lowered, thus allowing the width of $\alpha$-lath in air-cooled Zr-0.86Sn-0.40V alloy to be fine. The width of ${\alpha}$-lath in air-cooled Zr-0.84Sn-xSb, however, was rarely changed with Sb content. The ${\beta}\;to\;{\alpha}$ transformed microstructures of water-quenched Zr-0.84Sn, Zr-0.84Sn-0.10V and Zr-0.84Sn-0.19V alloys were mainly slipped martensite. On the other hand, those of wafter-quenched Zr-0.86Sn-0.40V and Zr-0.85Sn-0.05Sb alloys were predominantly twinned martensite. In case of water-quenched Zr-0.85Sn-0.12Sb and Zr-0.84Sn-0.17Sb alloys, basketweave structure was observed. The transition of slipped martensite to twinned martensite in Zr-0.84Sn-xV alloys and the transition of twinned martensite to basketweave structure in Zr-0.84Sn-xSb alloys were due to the decrease of $M_s$ temperature.
Keywords
Zirconium; Phase Transformation; Martensite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ N.V. Bangaru ] / J. of Nucl. Mater.   DOI   ScienceOn
2 D.O. Northwood and K. Dosen, Metallography, 13, 249 (1980)   DOI   ScienceOn
3 S. Banerjee and R. Krishan, Met. Trans. A, Vol. 4, 1811 (1973)   DOI
4 O.T. Woo and K. Tangri, J. of Nucl. Mater., 79, 82 (1979)   DOI   ScienceOn
5 L.H. Keys, G. Johanson and A.S. Malin, J. of Nucl. Mater., Vol. 59, 137 (1976)   DOI   ScienceOn
6 D. Srivastava, Madangopa K., S. Banerjee and S. Ranganathan, Acta Metall. Mater. Vol. 41, No.12, 3445 (1993)   DOI   ScienceOn
7 C,M. Wayman, Proc. Int. Conf. On Solid-to-Solid Transformation, Pittsburgh, Pensylvania, USA Aug. 10-14, 1981 (AIME, New York, 1982)
8 S. Banerjee and R. Krishan, Acta Metallurgica, Vol.19, 1317 (1971)   DOI   ScienceOn
9 T.B. Massalski et al., Binary alloy phase diagrams, Vol. 2, 2030, 2157 (ASM, ohio, 1986)
10 G. Okvist and K. Kallstrom, J. of Nucl. Mater., 35, 316 (1970)   DOI   ScienceOn
11 G. Krauss and A.R. Marder, Metallugical Transactions, Vol. 2, 2343 (1971)   DOI
12 I.S. Chung, K.C. Park and J.R. Huh,, J. of the Korean Inst. of Metals, Vol. 26, No. 9, 895 (1988)
13 K. Loif, R. Borrelly and P. Merle, J. of Nucl. Mater., 210, 84 (1994)   DOI   ScienceOn
14 N.V. Bangaru, J. of Nucl. Mater., 131, 280 (1985)   DOI   ScienceOn
15 P. Chemelle, D.B. Knorr, J.B. Van Der Sande and R.M. Pelloux, J. of Nucl. Mater., 113, 58 (1983)   DOI   ScienceOn
16 T. Kudo, Y. Wakashima, H. Imahashi and M. Vagai, J. of Nucl. Mater., 132, 126 (1985)   DOI   ScienceOn
17 K.U. Huang, J. of Nucl. Mater., 136, 16 (1985)   DOI   ScienceOn
18 W.J.S. Yang and R.B. Adamson, Proc.8th Int. Symp. on Zirconium in the Nuclear Industry ASTM-STP1023, California, CA, 1988, 451 (ASTM, Philadelphia, 1989)