• Title/Summary/Keyword: Sn-Pb-Ag solder

Search Result 175, Processing Time 0.019 seconds

Electrochemical Ion Migration Sensitivity of Printed Circuit Board Plated with Sn-3.0Ag-0.5Cu and Sn-37Pb (Sn-3.0Ag-0.5Cu, Sn-37Pb 표면처리 기판의 전기화학적 이온 마이그레이션 민감도)

  • Hong, Won-Sik;Park, No-Chang;O, Cheol-Min;Kim, Gwang-Bae
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.136-138
    • /
    • 2006
  • Recently a lots of problems have observed in high densified and high integrated electronic components. One of them is ion migration phenomena, which induce the electrical short of electrical circuit. Ion migration phenomena has been observed in the field of exposing the specific environment and using for a long time. Also as the RoHS restriction was started in July 1st, 2006, Pb-free solder was utilized in electronics assemblies. In this case, it is very important to compatible between components and printed circuit board(PCB), thus surface treatment materials of PCB was changed to Sn, Sn-3.0Ag-0.5Cu, Cu. Therefore these new application become to need to reevaluate the sensitivity about electrochemical ion migration. This study was evaluated the occurrence time of electrochemical ion migration using by water drop test. We utilized PCB(printed circuit board) having a comb pattern as follows 0.1, 0.318, 0.5, 1.0 mm pattern distance. Sn-3.0Ag-0.5Cu and Sn-37Pb were electroplated on the comb pattern. 6.5V and 15.0V were applied in the comb pattern and then we measured the electrical short time causing by occurring the ion migration. In these results, we evaluate the sensitivity and derived the prediction models of ion migration occurrence time depending on the pattern materials, applied voltage and pattern spacing of PCB conductor.

  • PDF

Retarding Effect of Transferred Graphene Layers on Intermetallic Compound Growth at The Interface between A Substrate and Pb-free Solder (기판과 무연솔더 계면에 전사된 그래핀 층의 금속간화합물 성장 지연 효과)

  • Yong-Ho Ko;Dong-Yurl Yu
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.64-72
    • /
    • 2023
  • In this study, after transferring graphene on a Cu substrate and printing a Sn-3.0Ag-0.5Cu Pb-free solder paste on the Cu substrate, effects of the transferred graphene on formations and growths of intermetallic compound (IMC) at the interface between the Cu substrate and the solder were reported during processes of reflow soldering and isothermal aging for 1000 h with various temperatures (125, 150, and 175 ℃). Thicknesses of Cu6Sn5 and Cu3Sn IMCs at the interfaces with graphene were decreased during the reflow soldering and isothermal aging processes compared to those without graphene. The transferred graphene layers also showed that the growth rate constant and square of growth rate constant which related to the growth mechanisms of Cu6Sn5 and Cu3Sn IMCs with t he t emperature a nd t ime of t he i sothermal aging c ould dramatically decreased.

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions (태양전지 Ribbon 두께와 조성에 따른 Ribbon접합부의 장기 신뢰성 특성에 관한 연구)

  • Jeon, Yu-Jae;Kang, Min-Soo;So, Kyung-Jun;Lee, Jae-June;Shin, Young-Eui
    • Journal of Energy Engineering
    • /
    • v.23 no.4
    • /
    • pp.88-94
    • /
    • 2014
  • In this paper, Thermal Shock tests were performed varying the composition of the solder and ribbon thickness (A-type:0.2mm/60Sn40Pb, B-type:0.25mm/60Sn40Pb, C-type:0.2 /62Sn36Ag2Pb, D-type:0.25mm/62Sn36Ag2Pb) for evaluating the long-term reliability about Ribbon junction of Silicon solar cells. Thermal Shock test condition was performed during the 600cycles having $-40^{\circ}C{\sim}85^{\circ}C$ temperature range each 15 minutes; One cycle time was 30min. As a result, the initial efficiency of the A-type, B-type, and C, D-type were showed 15.0%, 15.4% and 15.8% respectively. After thermal shock test, the efficiency decreasing-rate of each type were as follow that A-type was 13.8%, B-Type was 15.4%. C-Type and D-Type was 15.3% and 16.2%, respectively. Also, degradation of surface changes and I-V characteristic curves were showed that the series resistance of the A, C-type was increased. Also, current lowering starting point of C-type shown 0.05volt[v] earlier than that of A-type. And B, D-type shown characteristics of composite lowering efficiency such as increase of series resistance, decrease of parallel resistance and cell damage. Therefore Initial solderability and efficiency of specimens using the solder with SnAgPb were superior. But, It has inferior the long-term reliability. The test was confirmed that as the ribbon thickness increases, long-term reliability of solar cell will decrease.

Produce of High Purity Tin from Spent Solder by Electro Refining (폐 솔더 잉곳으로부터 전해정련에 의한 고순도 주석 생산)

  • Lee, Ki-Woong;Kim, Hong-In;Ahn, Hyo-Jin;Ahn, Jae-Woo;Son, Seong-Ho
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • The high pure tin production was conducted from crude-tin containing waste solder by electro-refining process. The electro-refining process maintained at 0.2V produced tin with purity of 99.98%, whereas a little increase of voltage to 0.3 V resulted tin purity of 99.92%. The high pure tin of 3N in the present process was produced by fixing the voltage at 0.3V. Considering the high pure tin production, the current density was maintained within $100-120A/m^2$ with current efficiency of 94%. Addition of sulfuric acid of 20 ~ 25 g/L to the electrolyte solution was performed in order to keep Pb (lead) concentration below 100 mg/L in the final tin product. The anode slime generated during electro refining process was analyzed by X-ray diffraction (XRD) study to understand the phases of impurities in it. It detected the presence of Cu and Ag in the slime as in the form of $Cu_6Sn_5$, $Ag_3Sn$, whereas Pb occurred as $PbSO_4$ compound.

Reflow properties of the lead-free solder with low melting temperature (저온 접합용 무연 솔더의 reflow 공정 특성)

  • Yu, A-Mi;Jang, Jae-Won;Kim, Mok-Soon;Lee, Jong-Hyun;Kim, Jun-Ki
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.76-76
    • /
    • 2009
  • 눈부신 전자산업의 발달로 대부분의 전자제품이 다기능/경박단소화 되고 있어, 고밀도 실장 기술인 양면 표면실장과 고집적 패키징 기술인 패키지 적층 공정의 적용이 점차 확대되고 있다. 따라서 양면 표면실장 및 패키지 적층 공정에 사용되는 저온 접합용 무연 솔더 즉, $183^{\circ}C$(Sn-37Pb 공정 솔더 융점) 이하의 융점을 가지는 저온 무연 솔더에 대한 관심이 높아지고 있다. 한편, 미세피치 적용 분야에 있어 ACF/P를 이용한 COG 접속 분야 외에도 최근 저온 접합용 무연 솔더를 이용한 접속 분야가 각광을 받고 있다. 따라서, 접속피치 미세화에 대응하기 위해 스크린 인쇄성을 향상시킬 수 있는 저온 무연 솔더 paste 제조 및 공정 기술의 개발이 필요한 실정이다. 현재 대표적인 저온 무연 솔더 조성은 Sn-Bi계($138^{\circ}C$ 융점)와 Sn-In계($120^{\circ}C$ 융점)이다. 하지만, 이들 조성의 신뢰성 등에 있어 개선의 여지가 있으므로 이를 해결하기 위한 무연솔더 조성의 개발이 필요하다. 이와 같은 관점에서, 본 연구는 $137^{\circ}C$의 융점을 갖는 Sn-57.6Ag-0.4Ag 저온 무연 솔더 paste를 $217^{\circ}C$의 융점을 갖는 Sn-3.0Ag-0.5Cu 솔더 paste와 비교하여 인쇄성, reflow 특성, void inspection, 미세조직 관찰 및 underfill 적용 등의 실험을 실시하였다.

  • PDF

Effects of PCB Surface Finishes on Mechanical Reliability of Sn-1.2Ag-0.7Cu-0.4In Pb-free Solder Joint (PCB 표면처리에 따른 Sn-1.2Ag-0.7Cu-0.4In 무연솔더 접합부의 기계적 신뢰성에 관한 연구)

  • Kim, Sung-Hyuk;Kim, Jae-Myeong;Yoo, Sehoon;Park, Young-Bae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.57-64
    • /
    • 2012
  • Ball shear test was performed by test variables such as loading speed and annealing time in order to investigate the effect of surface finishes on the bonding strength of Sn-1.2Ag-0.7Cu-0.4In Pb-free solder. The shear strength increased and the ductility decreased with increasing shear speed. With increasing shear speed, the electroless nickel immersion gold (ENIG) finish showed dominant brittle fracture mode, while organic solderability preservative (OSP) finish showed pad open fracture mode. The shear strength and toughness for both surface finishes decreased with increasing annealing time under the high-speed shear test of 500 mm/s. Typically, the thickness of intermetallic compound increased with increasing annealing time, which means that exposure of brittle fracture became much easier. With increasing annealing time, the both ENIG and OSP finishes exhibited the pad open fracture mode. Overall, ENIG finish showed higher shear strength rather than OSP finish due to its superior barrier stability.

Standardization of the Important Test Parameters in the Solder Ball Shear Test for Evaluation of the Mechanical Joint Strength

  • Kim J. W.;Koo J. M.;Lee W. B.;Moon W. C.;Moon J. H.;Yeon Y. M.;Shur C. C.;Jung S. B.
    • International Journal of Korean Welding Society
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 2005
  • The ball shear test was investigated in terms of the effects of test parameters, i.e., shear height and shear speed, with an experimental and non-linear finite element analysis for evaluating the solder joint integrity of area array packages. Two representative Pb-free solder compositions were examined in this work: Sn-3.5Ag-0.75Cu and In-48Sn. The substrate was a common SMD type with solder bond pad openings of 460 $\mu$m in diameter. The microstructural investigations were carried out using SEM, and the IMCs were identified with EDS. Shear tests were conducted with the two varying test parameters. It could be observed that increasing shear height, at fixed shear speed, has the effect of decreasing shear force for both Sn-3.5Ag-0.75Cu and In-48Sn solder joints, while the shear force increased with increasing shear speed at fixed shear height. Too high shear height could cause some undesirable effects on the test results such as unexpected high standard deviation values or shear tip sliding from the solder ball. The low shear height conditions were favorable for screening the type of brittle interfacial fractures or the degraded layers in the interfaces. The shear speed conditions were discussed with the stress analyses of the solder ball, and we cannot find any conspicuous finding which is related to optimum shear speed from the stress analyses.

  • PDF

An Analysis on the Thermal Shock Characteristics of Pb-free Solder Joints and UBM in Flip Chip Packages (플립칩 패키지에서 무연 솔더 조인트 및 UBM의 열충격 특성 해석)

  • Shin, Ki-Hoon;Kim, Hyoung-Tae;Jang, Dong-Young
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.5
    • /
    • pp.134-139
    • /
    • 2007
  • This paper presents a computer-based analysis on the thermal shock characteristics of Pb-free solder joints and UBM in flip chip assemblies. Among four types of popular UBM systems, TiW/Cu system with 95.5Sn-3.9Ag-0.6Cu solder joints was chosen for simulation. A simple 3D finite element model was first created only including silicon die, mixture between underfill and solder joints, and substrate. The displacements due to CTE mismatch between silicon die and substrate was then obtained through FE analysis. Finally, the obtained displacements were applied as mechanical loads to the whole 2D FE model and the characteristics of flip chip assemblies were analyzed. In addition, based on the hyperbolic sine law, the accumulated creep strain of Pb-free solder joints was calculated to predict the fatigue life of flip chip assemblies under thermal shock environments. The proposed method for fatigue life prediction will be evaluated through the cross check of the test results in the future work.

Electrochemical Behavior of Tin and Silver during the Electrorecycling of Pb-free Solder (Sn-Ag-Cu) Waste (폐무연솔더(Sn-Ag-Cu)의 전해재활용 시 주석과 은의 전기화학적 거동 연구)

  • Kim, Min-seuk;Lee, Jae-chun;Kim, Rina;Chung, Kyeong-woo
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.61-72
    • /
    • 2022
  • We investigated the electrochemical behavior of Sn (93.0 %)-Ag (4.06 %)-Cu (0.89 %) during electrolysis of Pb-free solder waste to recover tin and silver. A thin strip of the solder waste produced by high-temperature melting and casting was used as a working electrode to perform electrochemical analysis. During anodic polarization, the current peak of an active region decreased with an increase in the concentration of sulfuric acid used as an electrolyte. This resulted in the electro-dissolution of the working electrode in the electrolyte (1.0 molL-1 sulfuric acid) for a constant current study. The study revealed that the thickening of an anode slime layer at the working surface continuously increased the electrode potential of the working electrode. At 10 mAcm-2, the dissolution reaction continued for 25 h. By contrast, at 50 mAcm-2, a sharp increase in the electrode potential stopped the dissolution in 2.5 h. During dissolution, silver enrichment in the anode slime reached 94.3% in the 1 molL-1 sulfuric acid electrolyte containing a 0.3 molL-1 chlorine ion, which was 12.7% higher than that without chlorine addition. Moreover, the chlorine enhanced the stability of the dissolved tin ions in the electrolyte as well as the current efficiency of tin electro-deposition at the counter electrode.