• Title/Summary/Keyword: Smartphone and wearable

Search Result 58, Processing Time 0.028 seconds

Design and Implementation of Interactive-typed Bluetooth Device interact with Android Platform-based Contents Character (안드로이드 플랫폼 기반의 콘텐츠 캐릭터와 연동되는 체감형 블루투스 기기의 설계 및 구현)

  • Park, Byoung-Seob;Choi, Hyo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.127-135
    • /
    • 2014
  • Interactive-typed devices and contents that have been often applied in the field of entertainment and game are the technology that allows you to maximize the enjoyment and participation of users through the interaction of each. In this paper, we designed an interactive-typed smartphone app that is based on the Android platform, implemented the wearable Bluetooth device to control via a interactive interface with a vibration sensor and three-axis acceleration sensor. We tested the functionality and 3-axis motion's operability by using smartphone app, interface interactive-typed device that has been developed, prove useful as a wearable Bluetooth device that has the convenience of the user. Further, it is shown that by implementing the optimized protocol of the sensor data transfer over Bluetooth, it is possible to reduce the malfunction of the content of the smart phone.

A Simultaneous Real-Time Heart Rate Monitoring System for Multiple Users (다수 이용자를 위한 동시적 실시간 심박수 모니터링 시스템)

  • Ha, Sangho
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.8
    • /
    • pp.253-258
    • /
    • 2015
  • From the point of view of u-healthcare, heart rate is so useful for both illness for taking care of patients and wellness for improving the level of health and wellbeing. It is because heart rate is a significant clinical variable for all kinds of diseases as well as an indicator of the intensity of exercise. Recently, a number of various wearable heart rate monitors have been released to check people's status in the body by monitoring their heart rates. In addition, a number of smartphone applications have been released to conveniently monitor the status of exercise by using heart rate monitors. However, all of these applications are limited to a personal usage. In this paper, we will design a system to simultaneously monitor heart rates coming from multiple users in a real-time, and develop an Android application to apply the system. The application mainly features a simultaneous monitoring of heart rates coming from multiple users, allowing to be effectively applied to fitness centers.

User Motion Recognition Healthcare System Using Smart-Band (스마트밴드를 이용한 사용자 모션인식 헬스 케어 시스템 구현)

  • Park, Jin-Tae;Hwang, Hyun-Seo;Yun, Jun-Soo;Park, Gyung-Soo;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.619-624
    • /
    • 2014
  • Nowadays there are various smart devices and development with the development of smart phones and that can be attached to the human body wearable computing device has been in the spotlight. In this paper, we proceeded developing wearable devices in watch type which can detect user's movement and developing a system which connects the wearable devices to smart TVs, or smart phones so that users can save and manage their physical information in those devices. Health care wearable devices already existing save information by connecting their systems to smart phones. And, smart TV health applications usually include motion detecting systems using cameras. However, there is a limit when connecting smart phone systems to different devices from various companies. Also, in case of smart TV, because some devices may not have cameras, there can be a limit for users who wants to connect their devices to smart TVs. Wearable device and user information collected by using the smart phone and when it is possible to exercise and manage anywhere. This information can also be confirmed by the smart TV applications. By using this system will be able to take advantage of the study of the behavior of the future work of the user more accurately be measured in recognition technology and other devices.

A Wrist Watch-type Cardiovascular Monitoring System using Concurrent ECG and APW Measurement

  • Lee, Kwonjoon;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.702-712
    • /
    • 2016
  • A wrist watch type wearable cardiovascular monitoring device is proposed for continuous and convenient monitoring of the patient's cardiovascular system. For comprehensive monitoring of the patient's cardiovascular system, the concurrent electrocardiogram (ECG) and arterial pulse wave (APW) sensor front-end are fabricated in $0.18{\mu}m$ CMOS technology. The ECG sensor frontend achieves 84.6-dB CMRR and $2.3-{\mu}Vrms$-input referred noise with $30-{\mu}W$ power consumption. The APW sensor front-end achieves $3.2-V/{\Omega}$ sensitivity with accurate bio-impedance measurement lesser than 1% error, consuming only $984-{\mu}W$. The ECG and APW sensor front-end is combined with power management unit, micro controller unit (MCU), display and Bluetooth transceiver so that concurrently measured ECG and APW can be transmitted into smartphone, showing patient's cardiovascular state in real time. In order to verify operation of the cardiovascular monitoring system, cardiovascular indicator is extracted from the healthy volunteer. As a result, 5.74 m/second-pulse wave velocity (PWV), 79.1 beats/minute-heart rate (HR) and positive slope of b-d peak-accelerated arterial pulse wave (AAPW) are achieved, showing the volunteer's healthy cardiovascular state.

Data Analysis and Risk Assessment of Smartwatch (스마트워치 데이터 분석 및 위험도 평가)

  • Lee, Youngjoo;Yang, Wonseok;Kwon, Teakyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1483-1490
    • /
    • 2017
  • Wearable devices need a host device to be paired with because of connectivity, functionality and ease personalization. There should be frequent update and backup processes between the paired devices even without user's consciousness. Due to pairing process, user-specific data are copied from smartphone and transferred to paired smartwatch. We focus on what happens in smartwatch because of pairing process. We perform an experiment study by observing and extracting data from smartwatch under real world usage phases. With a survey of user awareness on smartwatch regarding security and privacy, moreover, we suggest risk assessment on smartwatch in five levels, particularly considering pairing process based on security and privacy.

A study on smart fashion product development trends (스마트패션제품 개발 동향에 관한 연구)

  • Suh, Sung-Eun;Roh, Jung-Sim
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.6
    • /
    • pp.1097-1115
    • /
    • 2015
  • ICT in the IOT era is the core basis of modern society. This study investigated and analyzed the recent commercialization trends of smart fashion products internationally and domestically, to utilize them as the basis of data for developing user-friendly smart fashion products that can meet the needs of consumers. Keyword research using the most representative search engines, Google and Naver was conducted for searching for various wearable items commercialized actively since 2010. The final 78 products were classified by the physical area, and the key features and benefits were analyzed. Smart fashion products were classified as four physical types for the head and face, torso, arms and hands, and ankles and feet. Smart fashion products for each body part were developed in various ways, such as hats, glasses, lenses, virtual screens, earphones, headsets, clothing, watches, wrist bands, gloves, rings, wallets, bags, anklets, shoes, socks, and insoles. The main features were music playback, bluetooth, a camera based on NFC, virtual effects, health and safety protection through measuring heartbeat and momentum, and social network sharing of all kinds of information, based on inter-working with a smartphone. These functions represent the physical, social, and emotional interactions among users and their surroundings, as well as the users, themselves. The research results are expected to be used in future studies on planning user-friendly and marketable products through in-depth analysis of the design characteristics of smart fashion products as well as consumer responses.

Agreement of Physical Activity Measured Using Self-Reporting Questionnaires with Those Using Actigraph Devices, Focusing on the Correlation with Psychological State

  • Seo, Kyoungsan;Jung, Mi Ok;Suh, Minhee
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.4
    • /
    • pp.287-297
    • /
    • 2021
  • Purpose: This study aimed to evaluate the correlation and agreement of physical activity (PA) between data obtained from wearable Actigraph devices and self-reporting questionnaires, and to investigate the relationship between psychological state (depression, anxiety, and fatigue) and PA. Methods: A descriptive study was conducted using physical measurements and surveys. PA was measured through both the International Physical Activity Questionnaire (IPAQ) and the Actigraph GT3X+ device. The demographic characteristics of the subjects, as well as their depression, anxiety, and fatigue scores, were collected with structured questionnaires. The Spearman's rank correlation coefficient and the Bland-Altman plot method were employed. Results: Data from 36 healthy adults were analyzed. The overall levels of PA measured using the IPAQ and the Actigraph were 1,891.69 MET min/week and 669.96 MET/day, respectively. Total levels of PA did not show a significant correlation between the two measurement methodologies. However, the moderate-intensity PA resulting from the IPAQ scores showed a significant positive correlation with the light-intensity PA recorded by the Actigraph. The Bland-Altman plot analysis demonstrated that the levels of PA as measured by the two different methods did not match. In addition, PA measured using the Actigraph showed a significant negative correlation with depression and anxiety whereas PA measured using the IPAQ showed a significant positive correlation with fatigue. Conclusion: The conclusion of this study is that the data obtained from the subjective self-reporting questionnaire and the wearable Actigraph do not correlate or match in healthy adults. Future research should investigate the relationship between depression and PA intensity through the Actigraph, or other wearable devices equipped with smartphone apps.

Development of Emotion Inference Application with Location Information and User's Heartbeat Rate (심박 정보 기반 위치 정보 융합형 감정 추론 어플리케이션 개발)

  • Cha, Kyung-Ae;Choi, Hyun-Su;Hong, Won-Kee;Park, Se Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.8
    • /
    • pp.83-88
    • /
    • 2017
  • The personal activity information is expanding as a way to utilize wearable devices that are emerging as next generation smart devices. This paper develops an application for collecting heartbeat rate and location information of a user using SmartWatch, which is a smartphone and wearable device, and analyzing it through machine learning to infer user's emotion information. By using smart phone and smart watch, developed application can collect biometric data and location information by simply executing application and doing everyday life. In addition, adding the location information to the hearbit rate data, it proves higher utilization than existing ones.

Emergency Support System using Smart Device (스마트 기기를 활용한 응급 지원 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1791-1798
    • /
    • 2016
  • Recently, research about ESS(Emergency Support System) has been actively carried out to provide a variety of medical services using smart devices and wearable devices. Smart healthcare provides a personalized health care service using various types of bio-signal measuring sensors and smart devices. For the smart healthcare using a smart device, it is need to research about personal health monitoring using a smart wearable devices, and also need to research on service methods for first aid measures after an emergency. In this paper, we proposed about group management based emergency support system, that is monitoring about personal bio signal using smart devices and wearable devices to protect patient's life. The system notices to the medical volunteers based on the position information when an emergency situation. In addition, we have designed and implemented an emergency support system providing the information of the patient on the display when transmitting a picture of a patient using a smart device to the server.

Design of The Wearable Device considering ICT-based Silver-care (ICT 기반 실버케어를 고려한 웨어러블 디바이스 설계)

  • Lee, Min-hye;Shin, Seong-yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1347-1354
    • /
    • 2018
  • A bedridden patients, elderly people, and dementia who are subject to special care at a medical institution can not handle the feces themselves and need the help of a guardian or care-giver. In particular, toxic substances are contained in the stools, which can cause eczema, dermatitis and urticaria, so it is important to replace diapers. In this paper, we propose a wearable device design for the detection of excretions in consideration of the various excretion requirements of the elderly. The device is a form in which a module are attached to an adult diaper used in a nursing hospital to detect excreta, and the presence or absence of a wearer can be confirmed by an LED. The measured data is transmitted to the smartphone app in real time via Bluetooth in the module and can be checked for popup notification. The validity of this study was verified by comparing the actual excretion with the data collected through the designed module.