• Title/Summary/Keyword: Smart vehicle

Search Result 797, Processing Time 0.052 seconds

Vulnerability analysis of smart key for vehicle and countermeasure against hacking attack (차량용 스마트키 취약점 분석과 해킹공격 대응방안)

  • Kim, Seung-woo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.302-305
    • /
    • 2017
  • With the development of new ICT technology, new technologies are being applied to automobiles. The smart key for vehicles is also a device to which ICT new technology is applied. Therefore, a cyber-hacking attack against a smart key of a vehicle is possible. The cyber attack on the smart key can cause an abnormal control of the vehicle. Vehicle control can lead to vehicle hijacking and vehicle control risks. In this paper, we analyze the vulnerability of smart key for vehicle. Analyze cyber attacks against smart keys in vehicles. Then, we conduct real hacking attacks on smart keys for vehicles and propose countermeasures. We conduct a hacking attack against the smart key for vehicle that has devised countermeasures and analyze countermeasures against cyber attack security. This paper will contribute to the prevention of vehicle deodorization and to the safety of the people.

  • PDF

Grid service using Vehicle-to-Grid (V2G를 이용한 전력계통 서비스)

  • Lee, Hyun-Goo;Sohn, Hong-Kwan;Ha, Tae-Hyun;Bae, Jeong-Hyo;Kim, Dae-Kyeong;Lee, Sung-Joon;Kim, Sung-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.141-142
    • /
    • 2011
  • The increase in oil prices and the rising environmental concerns are boost the electric vehicle supply. Vehicle manufactures understand this trend quite well and plan to increase the production of electric vehicle(EV) such as Nissan LEAF and GM VOLT etc.. The growth of intermittent renewable energy sources such as solar and wind power requires utilities to find additional grid coupled energy storage and regulation capacity. EVs have a battery pack and a charger. The charger can be able to deliver power back to the grid from the vehicle's battery as well as charge the battery. The concept of deploying EVs to stabilize the electric power grid is generally referred to as Vehicle-to-Grid(V2G). We present the grid service using V2G.

  • PDF

Development of Smart AQS for Commercial Vehicle for Satisfying Agreeable Environment (쾌적 환경을 위한 상용차용 스마트 AQS 개발)

  • Kim, Man-Ho;Lee, Dong-Hyun;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.496-501
    • /
    • 2008
  • Recently, many automotive companies tend to apply an air quality system (AQS), which prevents polluted air such as smoke or dust by controlling air intake actuator of vehicle, to satisfy the consumer's need for agreeable in-vehicle environment. However, performance of the traditional AQS is not satisfactory because a polluted air may enter into the inside of vehicle through the breaks of windows. Especially, the commercial vehicles such as bus or truck need to be prevented polluted air from the breaks of vehicle. Hence, as an alternative to the traditional AQS, this paper presents the architecture of smart AQS for commercial vehicle and implementation of the smart AQS. Also, the performance of the suggested system is evaluated through an experimental testbed.

A Study on The Frequency Allocation of WAVE for Smart Vehicle Industry (스마트 자동차 산업 발전을 위한 WAVE 통신용 주파수 분배에 대한 고찰)

  • Kim, Seungcheon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.183-189
    • /
    • 2014
  • A recent trend of 'Smart Technology' has changed the simple and normal car into smart vehicle. Smart vehicle has a complex aspects of technologies and Wireless Access in Vehicular Environment (WAVE) is the technology that is mentioned for the communication infrastructure of Smart Vehicle. The current status about WAVE in Korea, however, is not good to be used in smart vehicular communication. The reason for that is that the frequency band for WAVE is not assigned or allocated in Korea. In this paper, we will explore the current status of technology standard for WAVE and investigate the way of frequency allocation for WAVE with the survey analysis from the smart vehicle industry.

Car Theft Protection System using CAN Communication and Smart Devicenment (CAN 통신과 Smart Device를 이용한 차량 도난 방지 System)

  • Kim, Jae-Kyung;Hwang, Man-Tae;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2136-2142
    • /
    • 2011
  • Smart Device Communications using the development of anti-theft system for vehicles have been investigated. because Progress of Smart Device If someone get the Key for Vehicle theft, he can be easily stolen vehicle. We thought about the concept of dual security devices. Using vehicle's identifier ID of CAN, when Comparing Smat phone identifier ID value and identifier ID received from the Can in the Head, If the same ID is compared. At this point after the activity of the vehicle's ACC On/Off the system allows the vehicle's ignition.

Consumers' Perception of Intelligent Vehicle (지능형 자동차에 대한 소비자의 인식 유형 연구)

  • Kim, Gibum;Lee, Hyejung;Lee, Jungwoo
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.405-420
    • /
    • 2018
  • As the intelligent vehicle market continues to develop relevant technologies and services for consumers, it is necessary to understand the characteristics of potential consumers. The purpose of this study is to identify and understand the types of potential consumers of intelligent vehicle using the Q-methodology. A Q-frame was constructed using thirty six statements from intelligent vehicle related literature concerning core technology, technology acceptance and personal consumption value, legal system and policy and social awareness. Q-sorting and in-depth interviews were conducted using thirty nine P-samples snowballed. Analysis produced four types of potential consumers for intelligent vehicle: Smart Car Consumer, Reasonable Consumer, Safety Car Consumer, and Smart Device Consumer. Smart Car Consumer value the vehicle capability of intelligent vehicle as most important while Reasonable Consumer focus upon the economics of intelligent vehicle. Safety Car Consumer recognize the safety of intelligent vehicle as most important while Smart Device Consumer highly value the IT functions provided by intelligent vehicles. Across these four different types of consumers, preventing injuries of intelligent vehicle drivers turned out to be the most common critical factor in assessing intelligent vehicle. Implications for the intelligent vehicle market is discussed at the end with further studies needed.

Development of IEEE 1451 based Smart Module for In-vehicle Networking Systems (IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Lee, Kyung-Chang;Kim, Man-Ho;Lee, Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.155-163
    • /
    • 2003
  • As vehicles become more intelligent for convenience and safety of drivers, the in-vehicle networking(IVN) systems and smart modules are essential components for intelligent vehicles. However, for wider application of smart modules and IVN's, the following two problems should be overcome. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports all the existing IVN protocols, the smart module must be independent of the type of networking protocols. Secondly, when the smart module needs to be replaced due to its failure, only the transducer should be replaced these without the replacement of the microprocessor and network transceiver. To solve these problems, this paper investigates the feasibility of an IEEE 1451 based smart module. More specifically, a smart module for DC motor control has been developed. The module has been evaluated for its delay caused by the IEEE 1451 architecture. In addition, the time required for transducer replacement has been measured.

IEEE 1451 based Smart Module for In-vehicle Networking Systems in Intelligent Vehicles (지능형 차량에서 IVN 시스템을 위한 IEEE 1451 기반 스마트 모듈의 개발)

  • Kim, Man-Ho;Ryu, Se-Hyung;Lee, Kyung-Chang;Lee, Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.168-171
    • /
    • 2003
  • As vehicles are more intelligent for convenience and safety of drivers, the in-vehicle networking systems and smart modules are essential components for intelligent vehicles. However, for the smart module to widely apply to the IVN systems, two problems are considered as follows. Firstly, because it is very difficult that transducer manufacturers developed the smart module that supports the existing all IVN protocols, the smart module must be independent to the type of networking protocols. Secondly, when the smart module is exchanged due to its failure, it is necessary how the transducer is only exchanged without exchange of the microprocessor and network transceiver. This paper deals with the IEEE 1451 based smart module that describes the digital interface between a network transceiver and sensor module. Finally. efficiency of the IEEE 1451 based smart module was evaluated on the experimental model.

  • PDF

Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring (운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구)

  • Shim, Kwangmin;Seo, Jung Hwan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

A Local Path Planning for Unmanned Aerial Vehicle on the Battlefield of Dynamic Threats (동적인 위협이 존재하는 전장에서의 무인 항공기 지역경로계획)

  • Kim, Ki-Tae;Nam, Yong-Keun;Cho, Sung-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • An unmanned aerial vehicle (UAV) is a powered aerial vehicle that does not carry a human operator, uses aerodynamic forces to provide vehicle lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and can carry a lethal or non-lethal payload. An UAV is very important weapon system and is currently being employed in many military missions (surveillance, reconnaissance, communication relay, targeting, strike, etc.) in the war. To accomplish UAV's missions, guarantee of survivability should be preceded. The main objective of this study is a local path planning to maximize survivability for UAV on the battlefield of dynamic threats (obstacles, surface-to-air missiles, radar etc.). A local path planning is capable of producing a new path in response to environmental changes. This study suggests a $Smart$ $A^*$ (Smart A-star) algorithm for local path planning. The local path planned by $Smart$ $A^*$ algorithm is compared with the results of existing algorithms ($A^*$ $Replanner$, $D^*$) and evaluated performance of $Smart$ $A^*$ algorithm. The result of suggested algorithm gives the better solutions when compared with existing algorithms.