• Title/Summary/Keyword: Smart packaging

Search Result 97, Processing Time 0.023 seconds

A Human Error-Free Wiring Guide System (휴먼 에러 방지용 배선 안내 시스템 개발)

  • Lee, Hyun Chan;Kim, Joo Han;Kim, Jinsung;Jeong, YeonUk
    • Korean Journal of Computational Design and Engineering
    • /
    • v.22 no.2
    • /
    • pp.181-189
    • /
    • 2017
  • In this paper, we develop a human error-free wire connection guide system. The only related work is Japanese patent by Hitachi. The patent is guiding the wire connection using PC server. And no implementation details have been reported publicly. We propose a new method based on smart mobile devices. The proposed methods are registered as two Korean patents. We implement a prototype wire connection guide system to verify the patents. Through human experiments, we verify the system can reduce the human error more than 90% and speed up the connection process more than twice faster than working without the system. To be used in the industrial fields, the prototype system needs more product packaging works.

Wettability and Intermetallic Compounds of Sn-Ag-Cu-based Solder Pastes with Addition of Nano-additives (나노 첨가제에 따른 Sn-Ag-Cu계 솔더페이스트의 젖음성 및 금속간화합물)

  • Seo, Seong Min;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • In the era of Fifth-Generation (5G), technology requirements such as Artificial Intelligence (AI), Cloud computing, automatic vehicles, and smart manufacturing are increasing. For high efficiency of electronic devices, research on high-intensity circuits and packaging for miniaturized electronic components is important. A solder paste which consists of small solder powders is one of common solder for high density packaging, whereas an electroplated solder has limitation of uniformity of bump composition. Researches are underway to improve wettability through the addition of nanoparticles into a solder paste or the surface finish of a substrate, and to suppress the formation of IMC growth at the metal pad interface. This paper describes the principles of improving the wettability of solder paste and suppressing interfacial IMC growth by addition of nanoparticles.

Effect of Modified Atmosphere Packaging on Shelf-Life Extension of Raw Oysters Crassostrea gigas (기체 치환 포장(Modified Atmosphere Packaging)에 의한 생굴(Crassostrea gigas)의 저장성 연장)

  • Du-Min Jo;Do-Ha Lee;Seul-Ki Park;Do Kyung Oh;Kyung-Jin Cho;Dong-Hoon Won;Geon-Woo Park;Mi-Ru Song;Ye-Bin Jang;So-Yeon Noh;Young-Mog Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.56 no.4
    • /
    • pp.512-519
    • /
    • 2023
  • Pacific oysters Crassostrea gigas are a popular shellfish in the Republic of Korea. However, due to their abundant moisture and nutrient content, oysters are susceptible to microbiological growth and biochemical changes, which lead to quality degradation. Therefore, the present study aimed to investigate the effectiveness of modified atmosphere packaging (MAP) in maintaining the quality of raw oysters during storage. Microbiological and physicochemical parameters such as pH, glycogen content, soluble protein, turbidity, and volatile basic nitrogen (VBN) were analyzed for oysters stored under various gas compositions and storage periods. The results showed that there was no significant increase in viable cell count in MAP oysters after six days in MAP oysters. Moreover, the physicochemical quality of non-MAP oysters deteriorated rapidly, whereas the quality of MAP oysters were maintained during storage. This study suggests that MAP can be an effective technique for maintaining the freshness of raw oysters during distribution and storage, and may also be useful for extending the shelf-life and maintaining the quality of other seafood products.

Recent Progress of Ti3Ci2Tix MXene Electrode Based Self-Healing Application (Ti3Ci2Tix MXene 기반 전극 소재의 자가 치유 적용 기술 개발 동향)

  • Jun Sang Choi;Seung-Boo Jung;Jong-Woong Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.20-34
    • /
    • 2023
  • Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3Ci2Tix MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3Ci2Tix MXene, followed by an exploration of self-healing application technologies based on Ti3Ci2Tix MXene.

Design for Enhanced Precision in 300 mm Wafer Full-Field TTV Measurement (300 mm 웨이퍼의 전영역 TTV 측정 정밀도 향상을 위한 모듈 설계)

  • An-Mok Jeong;Hak-Jun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.88-93
    • /
    • 2023
  • As the demand for High Bandwidth Memory (HBM) increases and the handling capability of larger wafers expands, ensuring reliable Total Thickness Variation (TTV) measurement for stacked wafers becomes essential. This study presents the design of a measurement module capable of measuring TTV across the entire area of a 300mm wafer, along with estimating potential mechanical measurement errors. The module enables full-area measurement by utilizing a center chuck and lift pin for wafer support. Modal analysis verifies the structural stability of the module, confirming that both the driving and measuring parts were designed with stiffness exceeding 100 Hz. The mechanical measurement error of the designed module was estimated, resulting in a predicted measurement error of 1.34 nm when measuring the thickness of a bonding wafer with a thickness of 1,500 ㎛.

A case study on the application of process abnormal detection process using big data in smart factory (Smart Factory Big Data를 활용한 공정 이상 탐지 프로세스 적용 사례 연구)

  • Nam, Hyunwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.99-114
    • /
    • 2021
  • With the Fourth Industrial Revolution based on new technology, the semiconductor manufacturing industry researches various analysis methods such as detecting process abnormalities and predicting yield based on equipment sensor data generated in the manufacturing process. The semiconductor manufacturing process consists of hundreds of processes and thousands of measurement processes associated with them, each of which has properties that cannot be defined by chemical or physical equations. In the individual measurement process, the actual measurement ratio does not exceed 0.1% to 5% of the target product, and it cannot be kept constant for each measurement point. For this reason, efforts are being made to determine whether to manage by using equipment sensor data that can indirectly determine the normal state of each step of the process. In this study, the Functional Data Analysis (FDA) was proposed to define a process abnormality detection process based on equipment sensor data and compensate for the disadvantages of the currently applied statistics-based diagnosis method. Anomaly detection accuracy was compared using machine learning on actual field case data, and its effectiveness was verified.

2012 KOREA STAR AWARDS (지상전시 - 2012미래패키징 신기술 정부포상)

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.230
    • /
    • pp.92-99
    • /
    • 2012
  • KOREA STAR AWARDS는 패키징 $\triangle$완제품 $\triangle$재료(플라스틱, 종이 판지, 금속, 유리, 목재, 복합소재) $\triangle$친환경 $\triangle$기계(설비) 및 관련 부품 $\triangle$ 인쇄(라벨링) $\triangle$부자재 $\triangle$생산 및 가공공정 $\triangle$패키징 디자인 등의 분야에서 신기술 개발과 지속가능성을 통해 패키징 산업 발전에 기여한 기업, 그리고 패키징 관련 정책연구, 기술개발, 패키징산업 육성에 기여한 개인에게 시상. 2012 KOREA STAR AWARDS는 코리아스타상(기업, 학생, 공로부문)으로 지식경제부장관상(상장4점, 표창2점), 한국생산기술연구원장상(상장 12점, 표창1점), 한국포장기술사회장상(상장 20점) 총 39점 시상. 코리아스타상 기업부문 지식경제부장관상은 '에이스기계 종이상자 자동접착기의 패스트 폴딩 장치', 'LG생활건강 이자녹스 SMART 진동시리즈', '삼성전자 냉장고 친환경 재사용 포장', '한국에이버리 친환경 수분리성 점착라벨' 4개 제품 수상. 코리아스타상 공로부문 지식경제부장관표창은 (주)경연전람 김영수 대표와 김수일포장개발연구소 김수일 소장 수여. 본 고에서는 "2011 미래패키징 신기술 정부포상" 수상작들의 패키징 동향 및 유공자들의 공적 내용을 살펴보도록 한다.

  • PDF

Technology of Flexible Semiconductor/Memory Device (유연 반도체/메모리 소자 기술)

  • Ahn, Jong-Hyun;Lee, Hyouk;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.

Recent Progress of Smart Sensor Technology Relying on Artificial Intelligence (인공지능 기반의 스마트 센서 기술 개발 동향)

  • Shin, Hyun Sik;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.3
    • /
    • pp.1-12
    • /
    • 2022
  • With the rapid development of artificial intelligence technology that gives existing sensors functions similar to human intelligence is drawing attention. Previously, researches were mainly focused on an improvement of fundamental performance indicators as sensors. However, recently, attempts to combine artificial intelligence such as classification and prediction with sensors have been explored. Based on this, intelligent sensor research has been actively reported in almost all kinds of sensing fields such as disease detection, motion detection, and gas sensor. In this paper, we introduce the basic concepts, types, and driving mechanisms of artificial intelligence and review some examples of its use.