Browse > Article
http://dx.doi.org/10.6117/kmeps.2013.20.2.001

Technology of Flexible Semiconductor/Memory Device  

Ahn, Jong-Hyun (School of Electrical & Electronic Engineering at Yonsei University)
Lee, Hyouk (Hanamicron)
Choa, Sung-Hoon (Seoul National University of Science and Technology)
Publication Information
Journal of the Microelectronics and Packaging Society / v.20, no.2, 2013 , pp. 1-9 More about this Journal
Abstract
Recently flexible electronic devices have attracted a great deal of attention because of new application possibilities including flexible display, flexible memory, flexible solar cell and flexible sensor. In particular, development of flexible memory is essential to complete the flexible integrated systems such as flexible smart phone and wearable computer. Research of flexible memory has primarily focused on organic-based materials. However, organic flexible memory has still several disadvantages, including lower electrical performance and long-term reliability. Therefore, emerging research in flexible electronics seeks to develop flexible and stretchable technologies that offer the high performance of conventional wafer-based devices as well as superior flexibility. Development of flexible memory with inorganic silicon materials is based on the design principle that any material, in sufficiently thin form, is flexible and bendable since the bending strain is directly proportional to thickness. This article reviews progress in recent technologies for flexible memory and flexible electronics with inorganic silicon materials, including transfer printing technology, wavy or serpentine interconnection structure for reducing strain, and wafer thinning technology.
Keywords
Flexible memory; Flexible semiconductor; Inorganic silicon memory; Flexibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.-I. Park, et al., "Printed Assemblies of Inorganic Light- Emitting Diodes for Deformable and Semitransparent Displays", Science, 325, 977 (2009).   DOI   ScienceOn
2 J. Yoon, et al., "Ultrathin Silicon Solar Microcells for Semitransparent, Mechanically Flexible and Microconcentrator Module Designs", Nat. Mater., 7, 907 (2008).   DOI   ScienceOn
3 J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo and J. A. Rogers, "Flexible Concentrator Photovoltaics Based on Microscale Silicon Solar Cells Embedded in Luminescent Waveguides", Nature Communications 2, 343 (2011).   DOI   ScienceOn
4 B. K. Sharma, et al., "Load-Controlled Roll Transfer of Oxide Transistor for Stretchable Electronics", Adv. Func. Mat., 23(16), 2024 (2013).   DOI   ScienceOn
5 I. Jung, et al., "Dynamically Tunable Hemispherical Electronic Eye Camera System with Adjustable Zoom Capability", Proc. Natl. Acad. Sci. U.S.A., 108(5), 1788 (2011).   DOI   ScienceOn
6 D.-H. Kim, J.-H, Ahn, W. M. Choi, H.-S. Kim, T.-H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits," Science, 320, 507 (2008).   DOI   ScienceOn
7 D.-H. Kim, Z. Liu, Y.-S. Kim, Jian Wu, J. Song, H.-S. Kim, Y. Huang, K.-C. Hwang, Y. Zhang, and J. A. Rogers, "Optimized Structural Designs for Stretchable Silicon Integrated Circuits", Small, 5(24), 2841 (2009).   DOI   ScienceOn
8 T.H. Lee, K. H, Shin and Y. J. Kim, "Flexible and Embedded Packaging of Thinned Silicon Chip", J. Microelectron. Packag. Soc., 11, 29 (2004).
9 Y. S. Kim, et al., "Advanced Wafer Thinning Technology and Feasibility Test for 3D Integration", Microelectron. Eng., 107, 65 (2013).   DOI   ScienceOn
10 G. S. Ryu, J. S. Kim, S. H. Jeong and C. K. Song, "A Printed OTFT-backplane for AMOLED Display", Org. Electron., 14(4), 1218 (2013).   DOI   ScienceOn
11 S. Lee, S. S. Lee, J. Park, I.-S. Park, Y. Seol, N.-E. Lee and J. Ahn, "Characteristics of Pentancene on High-k Film for Flexible Organic Field Effect Transistor", J. Microelectron. Packag. Soc., 13, 27 (2006).
12 C. M. Lieber, "One-Dimensional Nanostructures : Chemistry, Physics & Applications", Sol. St. Commun., 107(11), 607 (1998).   DOI   ScienceOn
13 J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, "Paper-like Electronic Displays: Large-area Rubber- stamped Plastic Sheets of Electronics and Microencapsulated Electrophoretic Inks", Proc. Natl. Acad. Sci. U.S.A., 98(9), 4835 (2001).   DOI   ScienceOn
14 C. Reese and Z. Bao, "Organic Single-Crystal Field-Effect Transistors", Materials Today, 10(3), 20 (2007).
15 M. G. Kane, et al., "100 MHz CMOS Circuits using Sequential Laterally Solidified Silicion Thin-Film Transistors on Plastic", Tech. Dig.-IEEE Int. Electron Dev. Meet., IEEE, 939 (2005).
16 C. M. Lieber and Z. L. Wang, "Functional Nanowires", MRS Bulletin, 32(2), 99 (2007).
17 Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, "One Dimensional Nanostructures : Synthesis, Characterization, and Applications", Adv. Mater., 15(5), 353 (2003).   DOI   ScienceOn
18 E. Menard, K. J. Lee, D. Y. Khang, R. G. Nuzzo, and J. A. Rogers, "A Printable Form of Silicon for High Performance Thin Film Transistors on Plastic Substrates", Appl. Phys. Lett., 84(26), 5398 (2004).   DOI   ScienceOn
19 Y. Sun and J. A. Rogers, "Fabricating Semiconductor Nano/ Microwires and Transfer Printing Ordered Arrays of Them onto Plastic Substrates", Nano Lett., 4(10), 1953 (2004).   DOI   ScienceOn
20 Z. Suo, H. Gleskova and S. Wagner, "Mechanics of Rollable and Foldable Film-on-Foil Electronics", Appl. Phys. Lett., 74(8), 1177 (1999).   DOI   ScienceOn
21 S.-I Park, J.-H. Ahn, S. Wang, Y. G. Huang and J. A. Rogers, "Theoretical and Experimental Studies of Bending of Inorganic Electronic Materials on Plastic Substrates", Adv. Funct. Mater., 18(18), 2673 (2008).   DOI   ScienceOn
22 J.-H. Ahn, H.-S. Kim, K. J. Lee, Z. Zhu, E. Menard, R. G. Nuzzo and J. A. Rogers, "High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates", IEEE Electron Device Lett., 27(6), 460 (2006).   DOI   ScienceOn
23 R. S. Wagner and W. C. Ellis, "Vapor-Liquid-Solid Mechanism of Single Crystal Growth", Appl. Phys. Lett., 4(5), 89 (1964).   DOI
24 L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, "Epitaxial Core-Shell and Core-Multishell Nanowire Heterostructures", Nature, 420, 57 (2002).   DOI   ScienceOn
25 N. A. Melosh, A. Boukai, F. Diana, B. Geradot, A. Badolato, P. M. Petroff, and J. R. Heath, "Ultrahigh-density Nanowir Lattics and Circuits", Science, 300, 112 (2003).   DOI   ScienceOn
26 J.-H. Ahn, H.-S. Kim, K. J. Lee, S. Jeon, S. J. Kang, Y. Sun, R. G. Nuzzo and J. A. Rogers, "Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials", Science, 314, 1754 (2006).
27 J.-H. Ahn, H.-S. Kim, E. Menard, K. J. Lee, Z. Zhu, D.-H. Kim, R. G. Nuzzo, J. A. Rogers, I. Amlani, V. Kushner, S. G. Thomas and T. Duenas, "Bendable Integrated Circuits on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon", Appl. Phys. Lett., 90(21), 213501 (2007).   DOI   ScienceOn
28 Y. Sun, S. Kim, I. Adesisa, and J. A. Rogers, "Bendable GaAs Metal-Semiconductor Field Effect Transistors Formed with Printed GaAs Wire Arrays on Plastic Substrates", Appl. Phys. Lett., 87(8), 083501 (2005).   DOI   ScienceOn
29 A.J. Baca, M.A. Meitl, H.C. Ko, S. Mack, H.-S. Kim, J. Dong, P.M. Ferreira and J.A. Rogers, "Printable Single-Crystal Silicon Micro/Nanoscale Ribbons, Platelets and Bars Generated from Bulk Wafers", Adv. Func. Mater., 17(16), 3051 (2007).   DOI   ScienceOn
30 M. A. Meitl, Z.-T. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo and J. A. Rogers, "Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp", Nat. Mater., 5, 33 (2006).   DOI   ScienceOn