• Title/Summary/Keyword: Smart IT Technology

Search Result 3,992, Processing Time 0.03 seconds

Detection Scheme of Heart and Respiration Signals for a Driver of Car with a Doppler Radar (도플러 레이더 기반 차량 운전자의 심박 및 호흡 신호 검출 기법 연구)

  • Yun, Younguk;Lee, Jeongpyo;Kim, Jinmyung;Kim, Youngok
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.87-95
    • /
    • 2020
  • Purpose: In this paper, we propose an algorithm for detecting respiratory rate and heart beat of a driver of car by exploiting Doppler radar, and verifying the feasibility of the study through experiments. Method: In this paper, we propose a weighted peak detection technique using peak frequency values. The tests are performed in stop-state and driving-state, and the experiment result is analyzed by two proposed algorithms. Result: The results showed more than 95% and 96% accuracy of respiratory and heart rate, respectively. It also showed more than 72% and 84% accuracy of those even for driving experiments. Conclusion: The proposed detection scheme for vital signs can be used for the safety of the driver as well as for prevention of a large size of car accidents.

Improvement to High-Availability Seamless Redundancy (HSR) Unicast Traffic Performance Using a Hybrid Approach, QRPL (High-Availability Seamless Redundancy (HSR)의 Unicast 트래픽 성능 향상을 위한 QRPL 알고리즘)

  • Altaha, Ibraheem Raed;Rhee, Jong Myung
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.2
    • /
    • pp.29-35
    • /
    • 2016
  • High-availability seamless redundancy (HSR) is a fault-tolerant protocol for Ethernet networks that provides two frame copies for each frame sent. Each copy is forwarded on a separate physical path. HSR is a potential candidate for several fault-tolerant Ethernet applications, including smart-grid communications. However, the major drawback of the HSR protocol is that it generates and circulates unnecessary frames within connected rings regardless of the presence of a destination node in the ring. This downside degrades network performance and can deplete network resources. Two simple but efficient approaches have previously been proposed to solve the above problem: quick removing (QR) and port locking (PL). In this paper, we will present a hybrid approach, QRPL, by combining QR with PL, resulting in further traffic reductions. Our analysis showed that network traffic is significantly reduced for a large-sized HSR connected ring network compared to the standard HSR protocol, QR, and PL.

Rechargeable Zn-air Energy Storage Cells Providing High Power Density (고출력.고에너지 밀도의 아연금속-공기전지)

  • Park, Dong-Won;Kim, Jin Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.359-366
    • /
    • 2012
  • Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.

Efficient Resource Allocation Technique for LTE-Advanced based Interference Avoidance of Heterogeneous Network (LTE-Advanced 기반 이기종 네트워크 시스템의 간섭회피를 위한 효율적인 자원할당 기법)

  • Jang, Sung-Won;Seong, Hyeon-Kyeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.17 no.1
    • /
    • pp.46-52
    • /
    • 2016
  • LTE-Advanced system consisting of the number of cells in the cellular environment because it is built to allow efficient use of limited frequency resources of adjacent cell interference avoidance should be considered. Transition services in accordance with the development of the mobile communication technology, wireless multimedia content from voice-centric mobile communications services and causing a lot of mobile data traffic, such as smart phones and tablet terminals spread of a data-driven surge in mobile data traffic base stations in urban areas by increasing became a reality that can not be prevented. In this paper, we propose a new Hybrid resource allocation technique for improving the performance of the cell boundary and analyzed the performance of the proposed new techniques to perform the simulation using LTE-Advanced system level simulator based on 19cell of cellular system model.

The effect of rewards on developing right user attitudes of elementary school children (보상이 초등학생의 게임 사용 습관에 미치는 영향)

  • Kim, Young-Joo;Kim, Hea Jin;Lee, Jung-Nyun;Whang, Mincheol
    • Journal of Korea Game Society
    • /
    • v.17 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • The study is to drive right users' attitude of internet and smart phones by providing the rewards. It consisted of 4 different types of no compensation, praise card, achievement sticker and cash and its effect on user's behavior was statistically tested. 24 children in grades four through six participated in the study. The task in this study was game of mathematical calculation. The subjective satisfaction about the reward and heart response during the game task were measured. As the results, inactivation of sympathetic and parasympathetic was observed in the case of no compensation while activation in the case of praise card. Therefore, the praise card was observed in greater commitment and satisfaction than the other rewards. The difference between non-compensation and compensation was significant in the subjective satisfaction, but not difference between compensations.

Model-based and wavelet-based fault detection and diagnosis for biomedical and manufacturing applications: Leading Towards Better Quality of Life

  • Kao, Imin;Li, Xiaolin;Tsai, Chia-Hung Dylan
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.153-171
    • /
    • 2009
  • In this paper, the analytical fault detection and diagnosis (FDD) is presented using model-based and signal-based methodology with wavelet analysis on signals obtained from sensors and sensor networks. In the model-based FDD, we present the modeling of contact interface found in soft materials, including the biomedical contacts. Fingerprint analysis and signal-based FDD are also presented with an experimental framework consisting of a mechanical pneumatic system typically found in manufacturing automation. This diagnosis system focuses on the signal-based approach which employs multi-resolution wavelet decomposition of various sensor signals such as pressure, flow rate, etc., to determine leak configuration. Pattern recognition technique and analytical vectorized maps are developed to diagnose an unknown leakage based on the established FDD information using the affine mapping. Experimental studies and analysis are presented to illustrate the FDD methodology. Both model-based and wavelet-based FDD applied in contact interface and manufacturing automation have implication towards better quality of life by applying theory and practice to understand how effective diagnosis can be made using intelligent FDD. As an illustration, a model-based contact surface technology an benefit the diabetes with the detection of abnormal contact patterns that may result in ulceration if not detected and treated in time, thus, improving the quality of life of the patients. Ultimately, effective diagnosis using FDD with wavelet analysis, whether it is employed in biomedical applications or manufacturing automation, can have impacts on improving our quality of life.

Structural monitoring of wind turbines using wireless sensor networks

  • Swartz, R. Andrew;Lynch, Jerome P.;Zerbst, Stephan;Sweetman, Bert;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.183-196
    • /
    • 2010
  • Monitoring and economical design of alternative energy generators such as wind turbines is becoming increasingly critical; however acquisition of the dynamic output data can be a time-consuming and costly process. In recent years, low-cost wireless sensors have emerged as an enabling technology for structural monitoring applications. In this study, wireless sensor networks are installed in three operational turbines in order to demonstrate their efficacy in this unique operational environment. The objectives of the first installation are to verify that vibrational (acceleration) data can be collected and transmitted within a turbine tower and that it is comparable to data collected using a traditional tethered system. In the second instrumentation, the wireless network includes strain gauges at the base of the structure. Also, data is collected regarding the performance of the wireless communication channels within the tower. In both turbines, collected wireless sensor data is used for off-line, output-only modal analysis of the ambiently (wind) excited turbine towers. The final installation is on a turbine with embedded braking capabilities within the nacelle to generate an "impulse-like" load at the top of the tower. This ability to apply such a load improves the modal analysis results obtained in cases where ambient excitation fails to be sufficiently broad-band or white. The improved loading allows for computation of true mode shapes, a necessary precursor to many conditional monitoring techniques.

An Efficient IoT Healthcare Service Management Model of Location Tracking Sensor (위치 추적 센서 기반의 IOT 헬스케어 서비스 관리 모델)

  • Jeong, Yoon-Su
    • Journal of Digital Convergence
    • /
    • v.14 no.3
    • /
    • pp.261-267
    • /
    • 2016
  • As IoT technology has gained the attention all around the world, the development for various services of healthcare, smart city, agriculture, and defense based on IoT is in progress. However, it is likely that healthcare services based on IoT have a problem of being leaked of patients' biological information by a third party and that risks patients' lives. In this paper, an IoT health care service managing model based on location sensor is proposed, which secures the biological information of a patient and simplifies the procedure to process the treatment and administration steps by using the data resources sensed. Even when an emergency occurs, this proposed model can respond quickly using the location information of the patient, which enables the staff in the hospital to locate the patient in real time. In addition, there is an advantage to minimize the time and the process of care, because the location of the equipment for necessary treatment is possible to be instantaneously located with attached sensors.

Authentication Method using Multiple Biometric Information in FIDO Environment (FIDO 환경에서 다중 생체정보를 이용한 인증 방법)

  • Chae, Cheol-Joo;Cho, Han-Jin;Jung, Hyun Mi
    • Journal of Digital Convergence
    • /
    • v.16 no.1
    • /
    • pp.159-164
    • /
    • 2018
  • Biometric information does not need to be stored separately, and there is no risk of loss and no theft. For this reason, it has been attracting attention as an alternative authentication means for existing authentication means such as passwords and authorized certificates. However, there may be a privacy problem due to leakage of personal information stored in the server. To overcome these weaknesses, FIDO solved the problem of leakage of personal information on the server by using biometric information stored on the user device and authenticating. In this paper, we propose a multiple biometric authentication method that can be used in FIDO environment. In order to utilize multiple biometric information, fingerprints and EEG signals can be generated and used in FIDO system. The proposed method can solve the problem due to limitations of existing 2-factor authentication system by authentication using multiple biometric information.

Power analysis of electric transplanter by planting distances

  • Lee, Pa-Ul;So, Jin-Hwan;Nam, Yo-Sang;Choi, Chang-Hyun;Noh, Hyun-Seok;Shim, Jong-Yeal;Hong, Soon-Jung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.290-297
    • /
    • 2018
  • Electric drive technology is continually advanced to improve fuel efficiency in the automobile industry. It could improve the fuel efficiency of automobiles by 50% as well as agricultural machinery. The purpose of this study was to measure and analyze the power and current of an electric transplanter based on the planting distances during field operations. The electric transplanter was constructed by mounting the major components of a motor drive system onto a transplanter. The electric transplanter had a 3 kW motor power, and the major components included an inverter, battery, and a battery management system (BMS). The field tests were conducted by travelling at two speeds (300 and 760 mm/s) and by planting at three distances (260, 420 and 630 mm) with the working speed (300 mm/s), during travelling and transplanting. The results showed that the required power increased when the travelling speed was fast. One-way ANOVA for the planting distance and Duncan's multiple range test at a significance level of 0.05 were used to analyze the motor power using statistical analysis software. In addition, the required power increased when the planting distances were short at every working condition. The results of this study would provide useful information for the development an electric transplanter.