Browse > Article

Rechargeable Zn-air Energy Storage Cells Providing High Power Density  

Park, Dong-Won (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE))
Kim, Jin Won (School of Environmental Science and Engineering)
Lee, Jae Kwang (Ertl center for Electrochemistry and Catalysis, Gwangju Institute of Science and Technology (GIST))
Lee, Jaeyoung (Lab. for Energy Storage System, Research Institute for Solar & Sustainable Energies (RISE))
Publication Information
Applied Chemistry for Engineering / v.23, no.4, 2012 , pp. 359-366 More about this Journal
Abstract
Zn-Air energy storage cell is an attractive type of batteries due to its theoretical gravimetric energy density, cost-effective structure and environmental-friendly characteristics. The chargeability is the most critical in various industrial applications such as smart portable device, electric vehicle, and power storage system. Thus, it is necessary to reduce large overpotential of oxygen reduction/evolution reaction, the irreversibility of Zn anode, and carbonation in alkaline electrolyte. In this review, we try to introduce recent studies and developments of bi-functional air cathode, enhanced charge efficiency via modification of Zn anode structure, and blocking side reactions applying hybrid organic-aqueous electrolyte for high power density rechargeable Zn-Air energy storage cells.
Keywords
Zn-air storage cells; bi-functional air cathode; nanostructured Zn anode; water management; hybrid electrolyte; reliable current collector;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Sapkota and H. Kim, J. Ind. Eng. Chem., 15, 445 (2009).   DOI   ScienceOn
2 T. Ogasawara, A. Debart, M. Holzapfel, P. Novak, and P. G. Bruce, J. Am. Chem. Soc., 128, 1390 (2006).   DOI   ScienceOn
3 D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen. M. Moshkovich, and E. Levi, Nature, 407, 724 (2000).   DOI   ScienceOn
4 Y. Ma, N. Li, D. Li, M. Zhang, and X. Huang, J. Power Sources, 196, 2346 (2011).   DOI   ScienceOn
5 J. R. Zabaleta, Zinc air fuel cell vehicles; Review of different technologies to obtain zinc from zinc oxide, Illinois Institute of Technology (2011).
6 U. S. Patent 5,190,833, (1993).
7 Website of MEET Co., Ltd. (Korea) : http://www.mee-t.com.
8 M. Farnsworth, C. H. Kline, and J. G. Noltes, Zinc Chemicals, Zinc Development Association, London (1973).
9 T. P. Dirkse, in Zinc-Silver Oxides Batteries, ed. A. Fleischer and J. Lander, 1, Electrochemical Society Inc., Princeton, NJ (1971).
10 J. Kim, H. Lee, T. Oh, and S. Park, J. Korean Electrochem. Soc., 14, 231 (2011).   DOI   ScienceOn
11 K. Kinoshita, Electrochemical Oxygen Technology, Vol. I, 448, Wiley, New York (1992).
12 V. Neburchilov, H. Wang, J. J. Martin, and W. Qu, J. Power Sources, 195, 1271 (2010).   DOI   ScienceOn
13 U. S. Patent 5,318,862 (1994).
14 A. Gibeney and D. Zuckerbrod, Power Source, ed. J. Thomson, 143, Academic, New York (1983).
15 D. Tryk, W. Alfred, and E. Yeager. First Report for the period Oct.9,1980 to Apr.1.prepared by Western Reserve University. Subcontract 1377901 for Lawrence Livermore National Laboratory, Livermore, CA (1983).
16 Y. Shimizu, H. Matsude, A. Nemoto, N. Miura, and N. Yamazoe, Progress in Batteries & Battery Materials, ed. H. Noguchi, 12, 108, ITE-JEC Press, Brunswick, Ohio (1993).
17 Y. Shimizu, A. Nemoto, T. Hyodo, N. Miura, and N. Yamazoe, Denki Kagaku, 61, 1458 (1993).
18 A. N. Jain, S. K. Tiwari, P. Chartier, and R. N. Singh, J. Chem. Soc., Faraday Trans., 91, 1871 (1995).   DOI   ScienceOn
19 Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai, Nature Materials, 10, 780 (2011).   DOI   ScienceOn
20 Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 132, 13612 (2010).   DOI   ScienceOn
21 Z. Chen, A. Yu, D. Higgings, H. Li, H. Wang, and Z. Chen, Nano Lett., 12, 1946 (2012).   DOI   ScienceOn
22 H.-Y. Jung, Appli. Chem. Eng., 229, 125 (2011).
23 L. Wang, X. Zhao, Y. Lu, M. Xu, D. Zhang, R. Ruoff, K. J. Stevenson, and J. B. Goodenough, J. Electrochem. Soc., 158, A1379 (2011).   DOI   ScienceOn
24 B. G. Demczyk and C. T. Liu, J. Electrochem. Soc., 129, 1159 (1982).   DOI
25 U. S. Patent 4,333,993 (1982).
26 U. S. Patent 5,306,579 (1994).
27 U. S. Patent 6,428,931 (2002).
28 H. Meng and P. K. Shen, Electrochem. Commun., 8, 588 (2006).   DOI   ScienceOn
29 J. S. Lee, S. T. Kim, R. Cao, N. S. Choi, M. Liu, K. T. Lee, and J. Cho, Adv. Energy Mater., 1, 34 (2011).   DOI   ScienceOn
30 R. Y. Wang, D. W. Kirk, and G. X. Zhang, J. Electrochem. Soc., 153, C357 (2006).   DOI   ScienceOn
31 M. V. Simicic, K. I. Popov, and N. V. Krstajic, J. Electroanal. Chem., 484, 18 (2000).   DOI   ScienceOn
32 X. G. Zhang, J. Power Sources, 163, 591 (2006).   DOI   ScienceOn
33 R. J. Giliam, J. W. Graydon, D. W. Kirk, and S. J. Thorpe, Int. J. Hydrogen Energy, 32, 359 (2007).   DOI   ScienceOn
34 S. S. Chang, S. O. Yoon, H. J. Park, and A. Sakai, Applied Surface Science, 158, 330 (2000).   DOI   ScienceOn
35 Y. D. Cho and G. T. Fey, J. Power Sources, 184, 610 (2008).   DOI   ScienceOn
36 C. W. Lee, K. Sathiyanarayanan, S. W. Eom, and M. S. Yun, J. Power Sources, 160, 1436 (2006).   DOI   ScienceOn
37 H. Yang, Y. Cao, X. Ai, and L. Xiao, J. Power Sources, 128, 97 (2004).   DOI   ScienceOn
38 R. K. Ghacami and Z. Rafiei, J. Power Sources, 162, 893 (2006).   DOI   ScienceOn