• Title/Summary/Keyword: Small-signal Model

Search Result 396, Processing Time 0.043 seconds

ZVS Phase Shift Full-Bridge Converter's Small Signal Modeling and Digital Controller Design (ZVS 위상천이 풀브리지 컨버터의 소신호 모델링 및 디지털 제어기 설계)

  • Kim, Jeong-Woo;Cho, Younghoon;Choe, Gyu-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.321-322
    • /
    • 2014
  • In this paper, a zero-voltage switching (ZVS) phase shift full-bridge converter is analyzed. The small-signal model is derived to design a digital controller. PLECS simulation shows how sampling method effects on transfer function of ZVS phase shift full-bridge converter.

  • PDF

A Study on the Small Signal Modeling of Smart Power IC

  • Xu, Hai;Kim, Hee-Jun;Cho, Kyu-Min
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1140-1141
    • /
    • 2007
  • A method of modeling the Smart Power IC is presented in this paper, which is based on the IC's typical operation characteristics and small signal frequency response data. Using the least square identification, the IC's dynamic mathematical model, which is expressed as transfer function, can be synthesized from the experimentally obtained gain and phase data. The practicability and effectiveness of the method are verified by means of experiments.

  • PDF

Study of a unified framework for small signal stability of power systems (계통의 종합적 미소신호 안정도 해석에 관한 연구)

  • Kim, Sang-Ahm;Lee, Byoung-Jun;Kwon, Sae-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.201-203
    • /
    • 1998
  • This paper presents the framework for analysis of small-signal stabili1ty. In this framework the equilibrium points of system DAE model are traced using continuation method and instability points are determined on the solution path. Especially Implicit shift QR-modified ARnoldi method is utilized to calculated the rightmost eigenvalues. ISPS measure is utilized to determine critical parameters.

  • PDF

Effects of Wind Generation Uncertainty and Volatility on Power System Small Signal Stability

  • Shi, Li-Bao;Kang, Li;Yao, Liang-Zhong;Qin, Shi-Yao;Wang, Rui-Ming;Zhang, Jin-Ping
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.60-70
    • /
    • 2014
  • This paper discusses the impacts of large scale grid-connected wind farm equipped with permanent magnet synchronous generator (PMSG) on power system small signal stability (SSS) incorporating wind generation uncertainty and volatility. Firstly, a practical simplified PMSG model with rotor-flux-oriented control strategy applied is derived. In modeling PMSG generator side converter, the generator-voltage-oriented control strategy is utilized to implement the decoupled control of active and reactive power output. In modeling PMSG grid side converter, the grid-voltage-oriented control strategy is applied to realize the control of DC link voltage and the reactive power regulation. Based on the Weibull distribution of wind speed, the Monte Carlo simulation technique based is carried out on the IEEE 16-generator-68-bus test system as benchmark to study the impacts of wind generation uncertainty and volatility on small signal stability. Finally, some preliminary conclusions and comments are given.

Accurate parameter extraction method for FD-SOI MOSFETs RF small-signal model including non-quasi-static effects (NQS효과를 고려한 FD-SOI MOSFET의 고주파 소신호 모델변수 추출방법)

  • Kim, Gue-Chol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1910-1915
    • /
    • 2007
  • An accurate and simple method to extract equivalent circuit parameters of fully-depleted silicon-on-insulator MOSFETs small-signal modeling operating at RF frequencies including the non-quasi static effects is presented in this article. The advantage of this method is that a unique and physically meaningful set of intrinsic equivalent circuit parameters is extracted by de-embedding procedure of extrinsic elements such as parasitic capacitances and resistances of MOSFETs from measured S-parameters using simple Z- and Y- matrices calculations. The calculated small-signal parameters using the presented extraction method give modeled Y-parameters which are in good agreement with the measured Y-parameters from 0.5 to 20GHz.

An Accurate Small Signal Modeling of Cylindrical/Surrounded Gate MOSFET for High Frequency Applications

  • Ghosh, Pujarini;Haldar, Subhasis;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 2012
  • An intrinsic small signal equivalent circuit model of Cylindrical/Surrounded gate MOSFET is proposed. Admittance parameters of the device are extracted from circuit analysis and intrinsic circuit elements are presented in terms of real and imaginary parts of the admittance parameters. S parameters are then evaluated and justified with the simulated data extracted from 3D device simulation.

Eigenvalue Distribution Analysis Via UPFC for Enhancing Dynamic Stability Into the Multi-machine Power System (다기 전력시스템의 동적안정도 향상을 위해 UPFC 연계시 고유치 분포 해석)

  • 김종현;정창호;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.487-492
    • /
    • 2003
  • This paper analyzes an eigenvalue distribution and enhancement of the small signal stabiligy when an Unified Power Flow Controller (UPFC) modeling is connected into the multi-machine power system. Recently a lot of attention has been paid to the subject of dynamic stability. It deals with analysis of eigenvalue sensitivities with respect to parameters of UPFC Controller and damping of interarea and local electromechanical oscillation modes using UPFC Controller. It provides an insight and understanding in the basic characteristics of damping effects of UPFC Controller and shows a very stable frequency response via UPFC in test model. The series branch of the UPFC is designed to damp the power oscillation during transients, while the shunt branch aims at maintaining the bus voltage and angle. Comprehensive time-domain simulation studies using PSS/E show that the proposed robost UPFC controller can enhance the small signal stability efficiently in spite of the variations of power system operating conditions.

Cold FET modeling and examination of validness of parasitic resistances (수동 FET 모델링과 기생저항값의 유효성 검증)

  • Kim, Byung-Sung
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Direct extraction of FET's small signal model parameters needs predetermined parasitic elements usually obtained under forward cold FET conditionl This paper derives analytic intrinsic model for cold FET's and shows that normal cold FET condition can replace forward cold FET condition for extracting parasitic elements. Then, we track the error of hot FET's small signal model bounded by the cold FET condition and examine the validness of cold parasitic resistances by checking the existence of the error minimum.

  • PDF

Analytical Noise Parameter Model of Short-Channel RF MOSFETs

  • Jeon, Jong-Wook;Park, Byung-Gook;Lee, Jong-Duk;Shin, Hyung-Cheol
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.88-93
    • /
    • 2007
  • In this paper, a simple and improved noise parameter model of RF MOSFETs is developed and verified. Based on the analytical model of channel thermal noise, closed form expressions for four noise parameters are developed from proposed equivalent small signal circuit. The modeling results show a excellent agreement with the measured data of $0.13{\mu}m$ CMOS devices.

A Spiking Neural Network for Autonomous Search and Contour Tracking Inspired by C. elegans Chemotaxis and the Lévy Walk

  • Chen, Mohan;Feng, Dazheng;Su, Hongtao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2846-2866
    • /
    • 2022
  • Caenorhabditis elegans exhibits sophisticated chemotaxis behavior through two parallel strategies, klinokinesis and klinotaxis, executed entirely by a small nervous circuit. It is therefore suitable for inspiring fast and energy-efficient solutions for autonomous navigation. As a random search strategy, the Lévy walk is optimal for diverse animals when foraging without external chemical cues. In this study, by combining these biological strategies for the first time, we propose a spiking neural network model for search and contour tracking of specific concentrations of environmental variables. Specifically, we first design a klinotaxis module using spiking neurons. This module works in conjunction with a klinokinesis module, allowing rapid searches for the concentration setpoint and subsequent contour tracking with small deviations. Second, we build a random exploration module. It generates a Lévy walk in the absence of concentration gradients, increasing the chance of encountering gradients. Third, considering local extrema traps, we develop a termination module combined with an escape module to initiate or terminate the escape in a timely manner. Experimental results demonstrate that the proposed model integrating these modules can switch strategies autonomously according to the information from a single sensor and control steering through output spikes, enabling the model worm to efficiently navigate across various scenarios.