• Title/Summary/Keyword: Sludge activity

Search Result 171, Processing Time 0.023 seconds

Monitoring the Bacterial Community Dynamics in a Petroleum Refinery Wastewater Membrane Bioreactor Fed with a High Phenolic Load

  • Silva, Cynthia C.;Viero, Aline F.;Dias, Ana Carolina F.;Andreote, Fernando D.;Jesus, Ederson C.;De Paula, Sergio O.;Torres, Ana Paula R.;Santiago, Vania M.J.;Oliveira, Valeria M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2010
  • The phenolic compounds are a major contaminant class often found in industrial wastewaters and the biological treatment is an alternative tool commonly employed for their removal. In this sense, monitoring microbial community dynamics is crucial for a successful wastewater treatment. This work aimed to monitor the structure and activity of the bacterial community during the operation of a laboratory-scale continuous submerged membrane bioreactor (SMBR), using PCR and RT-PCR followed by denaturing gradient gel electrophoresis (DGGE) and 16S rRNA libraries. Multivariate analyses carried out using DGGE profiles showed significant changes in the total and metabolically active dominant community members during the 4-week treatment period, explained mainly by phenol and ammonium input. Gene libraries were assembled using 16S rDNA and 16S rRNA PCR products from the fourth week of treatment. Sequencing and phylogenetic analyses of clones from the 16S rDNA library revealed a high diversity of taxa for the total bacterial community, with predominance of Thauera genus (ca. 50%). On the other hand, a lower diversity was found for metabolically active bacteria, which were mostly represented by members of Betaproteobacteria (Thauera and Comamonas), suggesting that these groups have a relevant role in the phenol degradation during the final phase of the SMBR operation.

Isolation and Characterization of $\alpha$-Amylase Producing Bacillus sp. AIV 1940 and Properties of Starch Synthetic Wastewater Degradation ($\alpha$-Amylase 생성균주 Bacillus sp. AIV 1940의 분리, 특성 및 합성폐수분해능)

  • 박형수;김무훈;양선영;조미영;고범준;박용근
    • Korean Journal of Microbiology
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • $\alpha$-Amylase producing bacteria were isolated from activated sludge of corn processing wastewater plant and paddy field soil samples and selected by the direct iodine reaction. The isolate was identified as Bacillus sp. after morphology, API system and fatty acid analyses. To enchance $\alpha$-amylase productivity, a successive mutation of Bacillus sp. AIV 19 was performed using the treatment of nitrosoguanidine(NTG).The mutant, Bacillus sp. AIV 1940, showed about 1.8-fold level of amylase activity compared with parental strain. The isolate was Gram-positive and rod (2.8-3.0 $\mu$m long, 0.5-0.6 $\mu$m wide) type. The strain increased the bacterial mass at 3000 mg/l starch concentration. Organic substance removal rate was 40.2, 72.3% respectively after 1 and 3 day reaction using starch synthetic wastewater (intial CODcr was 4,455 mg/l).

Electricity Generation from Dairy Wastewater Using Microbial Fuel Cell (미생물연료전지를 이용한 유가공 폐수로부터 전기생산)

  • Roh, Sung-Hee;Lee, Sung-Wook;Kim, Kyung-Ryang;Kim, Sun-Il
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.297-301
    • /
    • 2012
  • Microbial fuel cell (MFC) is the major of bio-electrochemical system which can convert biomass spontaneously into electricity through the metabolic activity of the microorganisms. In this study, we used an activated sludge as a microbial inoculum and then investigated the feasibility of using dairy wastewater as a possible substrate for generating electricity in MFC. To examine the performance of MFC as power generator, the characteristics on cell potentials, power density, cyclic voltammetric analysis and sustainable power estimation were evaluated for dairy wastewater. The maximum power density of $40\;mW/m^2$was achieved when the dairy wastewater containing 2650 mg/L COD was used, leading to the removal of 88% of the COD. The results from this study demonstrate the feasibility of using MFC technology to generate electricity while simultaneously treating dairy wastewater effectively.

Characterization of Heavy Metals Bioleaching from Fly Ash by a Sulfur-Oxidizing Bacterium Thiobacillus thiooxidans: Effect of Solid Concentrations (황산화세균 Thiobacillus thiooxidans에 의한 fly ash의 중금속 제거 특성:고형물 농도의 영향)

  • 조경숙;문희선;이인숙
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.2
    • /
    • pp.183-190
    • /
    • 1999
  • The bioleaching of heavy metals from fly ash was performed by Thiobacillus thiooxidans MET isolated from the enrichment culture of an anaerobically digested sludge. The effect of solid concentrations on the efficiency of metal leaching was studied in shaken flasks. In the range of solid concentrations 20 g.L­$^1$to 100 g.L­$^1$T. thiooxidans MET oxidized S$^{0}$ to sulfate without any lag period. The final pH of slurry solution was decreased to below pH 1, and the final oxide-redox potential (ORP) was increased to over 420 mV in the solid concentrations below 100 g.L­$^1$. However, the initial lag period of 4 to 8 days was required to obtain the pH reduction and ORP increase of the slurry solutions in the range of solid concentrations 150 g.L­$^1$to 300 g.L­$^1$. The sulfur oxidation rate of T. thiooxidans MET in 20~100 g.L­$^1$solid concentrations was 0.70~0.75 g-S.L­$^1$ㆍ d­$^1$, but its sulfur oxidation activity was remarkably inhibited with increasing solid concentration over 150 g.L­$^1$. Increasing fly ash solids concentration in the range of solids concentration 20 g.L­$^1$ to 200 g.L­$^1$decreased the removal efficiency of Zn, Cu, Mn, Cr and Pb. The solubilization of heavy metals from fly ash was strongly correlated with the pH value of slurry solution. When the pH of slurry solution was reduced to 3, the solubilization process of Zn, Cu and Mn started, and their solubilization efficiency of Zn, Cu and Mn was progressively increased below pH 2. However, the solubilization process of Cr and Pb started at pH 2.5 and 2.0, respectively.

  • PDF

The Status of Biogas as Renewable Energy (신재생에너지로서 바이오가스 현황)

  • Lim, Young-Kwan;Lee, Joung-Min;Jung, Choong-Sub
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.125-130
    • /
    • 2012
  • In these days, there has been increased focus on global warming and the exhaustion of resources recently caused by the heavy consumption of fossil resources. In order to resolve these problems, biomass is increasingly gaining international attention as a renewable energy source. Biogas derived from various biomass is environmental friendly alternative fuel for power generation, heating and vehicle fuel. Large amounts of sewage sludge, food waste and manure are generated from human activity, but these organic wastes contain high levels of organic matter and thus they are potential substrates for producing methane of biogas. The biogas contains 60% of highly concentrated methane, which is expected to be used effectively as energy. In this paper, we investigate the status of biogas in Korea as an alternative energy.

Characterization of an alkaline esterase from an enriched metagenomic library derived from an oil-spill area

  • Baek, Seung Cheol;Jo, Jeong Min;Jeong, Soo-Mi;Lee, Jae Pil;Lee, Hyun Woo;Kim, Jungho;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.73-79
    • /
    • 2019
  • A novel esterase gene (est7S) was cloned from an enriched metagenomic library derived from an oil-spill area. The gene encoded a protein of 505 amino acids, and the molecular mass of the Est7S was estimated to be 54,512 Da with no signal peptide. Est7S showed the highest identity of 40% to an esterase from a sludge metagenome compared to the characterized enzymes with their properties, although it showed 99% identity to a carboxylesterase in the genome sequence of Alcanivorax borkumensis SK2. Est7S had catalytic triad residues, Ser183, Glu312, and His420, and the GESAG motif in most family VII lipolytic enzymes. Est7S was purified from the crude extract of clone SM7 using Sephacryl S-200 HR and HiTrap Q column chromatographies. The purified Est7S was optimally active at $50^{\circ}C$ and pH 10.0. Est7S showed a high specific activity of 366.7 U/mg protein. It preferred short length esters, particularly p-nitrophenyl acetate, efficiently hydrolyzed R- and S-enantiomers of methyl-3-hydroxy-2-methylpropionate, and glyceryl tributyrate. These properties of Est7S may provide potential merits in biotechnological applications such as detergent and paper processing under alkaline conditions.

Impact of Temperature and Alkalinity on Nitrogen Removal in the Start-up Period of Partial Nitrification in a Sequence Batch Reactor

  • Nguyen Van Tuyen;Tran Hung Thuan;Chu Xuan, Quang;Nhat Minh Dang
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.541-547
    • /
    • 2023
  • The effect of temperature and influent alkalinity/ammonia (K/A) ratio on the start-up of the partial nitrification (PN) process for an activated sludge-based domestic wastewater treatment was studied. Two different sequence batch reactors (SBR) were operated at 26 ℃ and 32 ℃. The relationship between temperature and the concentration of free ammonia (FA) and free acid nitrite (FNA) was investigated. A stable PN process was achieved in the 32 ℃ reactor when the influent ammonium concentration was lower than 150 mg-N/L. In contrast, the PN process in the 26 ℃ reactor had a higher nitrite accumulation rate (NAR) and ammonium removal efficiency (ARE) when the influent ammonia concentration was increased to more than 150 mg-N/L. Then three different ranges of the K/A ratio were applied to an SBR reactor. In the K/A range of 2.48~1.65, the SBR reactor achieved the highest NAR ratio (75.78%). This ratio helps to achieve the appropriate level of alkalinity to maintain a stable pH and provide a sufficient amount of inorganic carbon source for the activity of microorganisms. At the same time, FA and FNA values also reached the threshold to inhibit nitrite-oxidizing bacteria (NOB) without a significant effect on ammonia-oxidizing bacteria (AOB). Results showed that the control of temperature and K/A ratio during the start-up period may be important in establishing a stable and steady PN process for the treatment of domestic wastewater.

Optimization of Bioflocculant Production Conditions for Organic Wastewater Treatment with Aeromonas hydrophila KH-54 (Aeromonas hydrophila KH-54가 분비하는 유기폐수처리용 생물응집제 생산조건의 최적화)

  • Seo, Ho-Chan;Lee, Jung-Suk;Yun, Zu-Whan;Yi, Yun-Seok;Cho, Hong-Yon
    • Applied Biological Chemistry
    • /
    • v.41 no.6
    • /
    • pp.465-470
    • /
    • 1998
  • For the need of bio-degradable flocculant in stage of wastewater treatment, some cultural conditions of bioflocculant production were optimized with Aeromonas hydrophila KH-54. About 260 strains of type culture and bacteria isolated from marsh, pond, activated sludge, etc were examined for their ability to flocculate kaolin particles and swine wastewater. Among them, KH-54 showed the highest flocculating activity and was identified as Aeromonas hydrophila according to the cultural, morphological and physiological properties. The maximum production of the flocculant secreted by Aeromonas hydrophila KH-54 was observed in culture medium containing 2.0% mannitol, 0.05% ammonium chloride, 0.02% potassium phosphate dibasic, 0.01% $MgSO_4{\cdot}7H_2O$ and 0.05% yeast extract at initial pH 7.0 when cultured on rotary shaker controlled at $25^{\circ}C$ and 150 rpm. Under the optimized condition, the flocculating ability reached to 770 units/ml of kaolin flocculating activity and 81% of NTU removal efficiency against swine wastewater after 4 days cultivation. The bioflocculant was also effective on various organic wastewaters other than swine wastewater, showing NTU removal rate ranging from 92% to 34%.

  • PDF

Cloning, Expression, and Characterization of a New Xylanase from Alkalophilic Paenibacillus sp. 12-11

  • Zhao, Yanyu;Meng, Kun;Luo, Huiying;Yang, Peilong;Shi, Pengjun;Huang, Huoqing;Bai, Yingguo;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.8
    • /
    • pp.861-868
    • /
    • 2011
  • A xylanase gene, xyn7c, was cloned from Paenibacillus sp. 12-11, an alkalophilic strain isolated from the alkaline wastewater sludge of a paper mill, and expressed in Escherichia coli. The full-length gene consists of 1,296 bp and encodes a mature protein of 400 residues (excluding the putative signal peptide) that belongs to the glycoside hydrolase family 10. The optimal pH of the purified recombinant XYN7C was found to be 8.0, and the enzyme had good pH adaptability at 6.5-8.5 and stability over a broad pH range of 5.0-11.0. XYN7C exhibited maximum activity at $55^{\circ}C$ and was thermostable at $50^{\circ}C$ and below. Using wheat arabinoxylan as the substrate, XYN7C had a high specific activity of 1,886 U/mg, and the apparent $K_m$ and $V_{max}$ values were 1.18 mg/ml and 1,961 ${\mu}mol$/mg/min, respectively. XYN7C also had substrate specificity towards various xylans, and was highly resistant to neutral proteases. The main hydrolysis products of xylans were xylose and xylobiose. These properties make XYN7C a promising candidate to be used in biobleaching, baking, and cotton scouring processes.

Evaluation of Autoheated Thermophilic Aerobic Digestion Process for the Treatment of Pig Manure Wastewater (돈사폐수의 고온 호기성 소화공정 적용 타당성 평가)

  • Chung, Yoon-Jin;Cho, Jong-Bok;Lee, Jin-Yong;Lee, Jong-Hyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.103-114
    • /
    • 1995
  • Since autoheated thermophilic aerobic digestion (ATAD) process has various advantages for the treatment of high-strength organic wastewater, active research and field application has been applied in U.S.A. and Canada, recently and the interest in ATAD process has been elevated for treating high-strength organic wastewater efficiently in Korea. Therefore, various experiments were carried out to evaluate the feasibility of ATAD process for the treatment of pig manure wastewater. The results of this study showed possibility to reuse pig manure wastewater as wet fodder or liquid compost, since ATAD process led excellent stabilization on the basis of odor and putrefaction. However. digested sludge can not be provided as wet fodder to most of hog farms without changing dry feeder system into wet system and as liquid compost to hog farms not having their own grass land. Since the results showed that the increase of temperature in reactor was resulted not from energy by biological activity. but from mechanical mixing energy. the reactor investigated in this study was against the principle of ATAD process. Therefore. if pig manure wastewater treated by ATAD can not be utilized as wet fodder. it is not economical to adopt ATAD process only for the treatment of wastewater.

  • PDF